Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stammzellschalter auf Wanderschaft

29.05.2015

Freiburger Biologen haben gezeigt, wie Signale in Pflanzenwurzeln die Aktivität von Stammzellen bestimmen

Wurzeln wachsen fortwährend, um eine Pflanze mit Wasser und Mineralien zu versorgen und sie fest im Boden zu verankern. Dafür verantwortlich sind pluripotente Stammzellen. Um nicht selbst zu differenzieren und pluripotent zu bleiben, benötigen Stammzellen Signale von den Nachbarzellen.


Das Ruhezentrum der Wurzel der Ackerschmalwand erzeugt Signale, dank derer Stammzellen pluripotent bleiben und nur bestimmte Tochterzellen differenzieren. Illustration: Arbeitsgruppe Laux


Dort, wo die Konzentration von WOX5 hoch genug ist, gelingt es der Stammzellnische, pluripotente Stammzellen zu erhalten. Wo die Konzentration von WOX5 dagegen niedrig ist, steigt die Konzentration von CDF4 und die Zellen differenzieren zu Wurzelgewebe. Illustration: Arbeitsgruppe Laux

Nur eine kleine Gruppe von sich langsam teilenden Zellen, das so genannte Ruhezentrum der Wurzel, erzeugt diese Signale, die für die Stammzellen lebenswichtig sind. Ein internationales Forschungskonsortium, angeleitet vom Freiburger Biologen Prof. Dr. Thomas Laux, hat gezeigt, dass der Transkriptionsfaktor WUSCHEL HOMEOBOX (WOX) 5 das Signalmolekül ist und durch Poren aus den Zellen des Ruhezentrums in die Stammzellen einwandert.

Die Ergebnisse hat das Forschungsteam in der Fachzeitschrift „Developmental Cell“ veröffentlicht.

„Die Aufklärung des Mechanismus, mit dem Signale in der Wurzel die Stammzellaktivität bestimmen, lässt Rückschlüsse auf die generellen Mechanismen der Stammzellregulation bei Pflanzen und Menschen zu“, sagt Laux. Sie ermögliche zukünftig zudem, zu untersuchen, wie sich das Pflanzenwachstum an unterschiedliche Umweltbedingungen anpasst. „Ein spannendes Aufgabengebiet in der Zeit des Klimawandels.“

Pluripotente Stammzellen sind die Alleskönner unter den Zellen bei Pflanzen und Tieren. Wenn sie sich teilen, entstehen zwei Arten von Tochterzellen: Einige von ihnen werden zu neuen Stammzellen und einige differenzieren, das heißt, sie ersetzen zum Beispiel Gewebe oder bilden neue Organe. Der Körper erzeugt die Signale, die eine Zelle zur Stammzelle machen, in speziellen Stammzellnischen. Nur dort können Stammzellen bestehen. Für Blutstammzellen ist dieser Ort zum Beispiel das Knochenmark.

Die Arbeitsgruppe von Laux hatte bereits vor einigen Jahren den Transkriptionsfaktor WOX5, der für die Signalherstellung notwendig ist, in den Zellen des Ruhezentrums der Wurzel gefunden. Warum er notwendig ist, war jedoch bislang unklar. Das Team um Laux untersuchte die Stammzellen in der Modellpflanze Arabidopsis, der Ackerschmalwand, die zu den Schaumkressen gehört.

Es gibt jedoch bereits Hinweise darauf, dass die Ergebnisse auch in Nutzpflanzen, wie zum Beispiel Reis, gültig sind. Wenn das Signal WOX5 durch Poren in die Stammzellen gelangt ist, bindet es an die Promotoren, eine bestimmte DNA-Sequenz, von Zielgenen und rekrutiert über ein so genanntes Adaptorprotein ein Enzym. Dieses Enzym verändert die Proteinhülle der DNA, das Chromatin, und erreicht dadurch, dass das entsprechende Gen nicht mehr effektiv abgelesen werden kann.

Doch warum schaltet WOX5 das Zielgen CDF4 in den Stammzellen ab? Die Forschenden um Laux zeigten, dass die Funktion von CDF4 darin liegt, die Differenzierung der dafür vorgesehenen Tochterzellen der Stammzellen einzuleiten.

Wenn die Menge des CDF4-Proteins in den Stammzellen zu hoch wäre, würden diese selbst zur Differenzierung gezwungen und die Pflanze müsste das Wurzelwachstum einstellen. Dort, wo die Konzentration von WOX5 hoch genug ist, gelingt es der Stammzellnische, pluripotente Stammzellen zu erhalten.

An Stellen, wo die Konzentration von WOX5 niedrig ist, steigt die Konzentration von CDF4 und die Zellen differenzieren zu Wurzelgewebe. Diese Balance ist das Geheimnis der lebenslangen Aktivität einer Stammzellnische.

Laux ist Laborleiter am Institut für Biologie III und Mitglied des Exzellenzclusters BIOSS Centre for Biological Signalling Studies der Universität Freiburg.

Artikel im Forschungsmagazin uni’wissen (2012):
www.pr2.uni-freiburg.de/publikationen/uniwissen/uniwissen-2012-2/#/32

Kontakt:
Prof. Dr. Thomas Laux
Institut für Biologie III
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-2943
E-Mail: laux@biologie.uni-freiburg.de

Weitere Informationen:

http://www.pr.uni-freiburg.de/pm/2015/pm.2015-05-29.78

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung
26.04.2017 | Universität Ulm

nachricht Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt
26.04.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung

26.04.2017 | Biowissenschaften Chemie

Naturkatastrophen kosten Winzer jährlich Milliarden

26.04.2017 | Interdisziplinäre Forschung

Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt

26.04.2017 | Biowissenschaften Chemie