Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stammzelle oder dedifferenzierte Zelle?

18.05.2011
Zebrafische regenerieren amputierte Knochen aus vorhandenen Knochenzellen

Der Dresdner Entwicklungsbiologe Dr. rer. nat. Gilbert Weidinger und sein Team konnten erstmals für die Regeneration von Knochen in amputierten Zebrafischflossen nachweisen, dass sich neue Knochenstrukturen aus dedifferenzierten knochenbildenden Zellen (Osteoblasten) entwickeln.


Die Knochen des Zebrafisches fluoreszieren grün mittels eines eingeschleusten Gens (Transgen), um die Knochenstrukturen sichtbar zu machen. Das Phänomen der Flossenregeneration zeigen die anderen Bildausschnitte: Je nach Reifegrad (Differenzierungsstadium) leuchten die knochenbildenden Zellen in drei transgenen Fischen gelb, grün oder rot. ©BIOTEC

Multipotente Stammzellen sind an diesem Regenerationsprozess nicht beteiligt. Die im Fisch natürlich vorkommenden Osteoblasten dedifferenzieren, das heißt, sie bilden sich in eine undifferenzierte Entwicklungsstufe zurück. Danach setzt deren Zellteilung ein, und es entwickeln sich aus ihnen nur neue knochenbildende Zellen, um die amputierten Knochenteile in der Fischflosse zu ersetzen. Diese Forschungsergebnisse wurden jetzt in der Fachzeitschrift Developmental Cell veröffentlicht (DOI: 10.1016/j.devcel.2011.04.014).

Bei Säugetieren, so auch beim Menschen, können Knochenbrüche und -beschädigungen nur in einem begrenzten Umfang regeneriert werden, also sich selbst wieder schließen und heilen. Zebrafische hingegen verfügen über die Fähigkeit, amputierte Knochenstrukturen in ihren Flossen komplett zu regenerieren. Bekannt war bisher, dass sich an der amputierten Fläche ein so genanntes Blastem bildet. Das Blastem ist ein Pool an Vorläuferzellen, die sich teilen, vermehren (proliferieren) und sich zu differenzierten Zellen entwickeln. Es stellt somit den Ursprungspool für die sich vermehrenden Zellen dar, die den Knochen in der fehlenden Flosse regenerieren. „Bisher war aber noch nicht bekannt, aus welchen Zellen sich das Blastem entwickelt“, berichtet Dr. Gilbert Weidinger, Gruppenleiter im Sonderforschungsbereich 655 am Biotechnologiezentrum der TU Dresden (BIOTEC).

Am Anfang des Forschungsprojekts gab es zwei Annahmen: Sind an der Regeneration von Knochenstrukturen in amputierten Zebrafischflossen natürlich vorkommende ruhende Stammzellen beteiligt? Oder entstehen die neu gebildeten Knochen aus sich dedifferenzierenden Zellen? Die Dedifferenzierung von Zellen ist ein faszinierender Vorgang, bei dem spezialisierte Zellen ihre besonderen Charakterisitika verlieren und zu Vorläuferzellen werden, wie sie in Embryonen vorkommen. Bisher wurde angenommen, dass die Dedifferenzierung wichtig für die Regeneration von Gliedmaßen in Salamandern und Flossen in Fischen ist, doch Beweise für diese These, die nur mit modernen gentechnischen Methoden erbracht werden können, haben noch gefehlt. Gilbert Weidingers Team zeigt nun erstmals mithilfe von transgenen Zebrafischlinien, dass dedifferenzierende Zellen und nicht Stammzellen Knochen bei amputierten Zebrafischflossen neu bilden.

„Des Weiteren wollten wir herausfinden, ob die dedifferenzierenden Zellen die Fähigkeit besitzen, sich nach der Rückbildung in ein früheres Entwicklungsstadium und der Zellteilung in alle unterschiedlichen Zellen ausdifferenzieren, die für die Neubildung der amputierten Flosse benötigt werden“, so Weidinger, „oder ob die dedifferenzierenden Zellen ausschließlich den Ausgangszelltyp ausbilden.“ Das Forscherteam zeigte, dass die dedifferenzierenden Zellen, die die Knochen in der amputierten Zebrafischflosse wieder komplett neu nachbilden, nicht multipotent wie Stammzellen sind, sondern dass sich aus jeder knochenbildenden Zelle (Osteoblast) einzig Osteoblasten entwickeln. Diese Erkenntnis deutet darauf hin, dass es einfacher als bisher gedacht sein könnte, bei Menschen eine Regeneration von Knochenstrukturen auszulösen.

Der Dresdner Regenerationsforscher wird nun weiteren Fragen nachgehen: Treffen die neuen Erkenntnisse bei der Knochenneubildung nur auf Flossenamputationen zu oder auch auf Knochenreparaturen? Können die Forschungsergebnisse ebenso bei der Regeneration anders aufgebauter Knochen wie zum Beispiel den Schädelknochen von Zebrafischen nachgewiesen werden? Weidinger: „Die große spannende Frage ist letztlich, ob die gewonnenen Ergebnisse bei Wirbeltieren wie dem Zebrafisch auch bei Säugetieren nachgewiesen werden können. Oder ob dort die zellulären Mechanismen andere sind, denn derzeit gilt bei Säugetieren noch die These, dass Knochen von Stammzellen repariert werden.“ Falls auch beim Menschen die Dedifferenzierung von Knochenzellen eine Rolle in der Knochenreparatur spielt, eröffnet dies neue Möglichkeiten für die Therapie von Knochendefekten.

Publikation:
Franziska Knopf¹, Christina Hammond², Avinash Chekuru¹, Thomas Kurth1, Stephan Hans¹, Christopher W. Weber³, Gina Mahatma³, Shannon Fisher³, Michael Brand¹, Stefan Schulte-Merker4 and Gilbert Weidinger¹: Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Developmental Cell. (2011). DOI: 10.1016/j.devcel.2011.04.014.
¹ Biotechnology Center and DFG Research Center for Regenerative Therapies, Technische Universität Dresden, Dresden
² Department of Biochemistry/ Physiology and Pharmacology, Medical Sciences, University of Bristol, University Walk, Clifton, United Kingdom
3 Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, USA

4 Hubrecht Laboratory, The Netherlands Institute for Developmental Biology, Utrecht, Netherlands

Pressekontakt
Birte Urban-Eicheler, Pressesprecherin Biotechnologisches Zentrum der TU Dresden
Tel.: 0351/ 463-40347
E-Mail: birte.urban-eicheler@crt-dresden.de
Dr. rer. nat. Gilbert Weidinger,
Forschungsgruppenleiter am Biotechnologischen Zentrum der TU Dresden
Tel.: 0351/ 463-40120
E-Mail: gilbert.weidinger@biotec.tu-dresden.de
Das Biotechnologische Zentrum (BIOTEC) wurde 2000 als zentrale wissenschaftliche Einrichtung der Technischen Universität Dresden mit dem Ziel gegründet, modernste Forschungsansätze in der Molekular- und Zellbiologie mit den in Dresden traditionell starken Ingenieurswissenschaften zu verbinden. Innerhalb der TU Dresden nimmt das BIOTEC eine zentrale Position in Forschung und Lehre mit dem Schwerpunkt Molecular Bioengineering und Regenerative Medizin ein. Es trägt damit entscheidend zur Profilierung der TU Dresden im Bereich moderner Biotechnologie und Biomedizin bei. Die Forschungsschwerpunkte der internationalen Arbeitsgruppen bilden die Genomik, die Proteomik, die Biophysik, zelluläre Maschinen, die Molekulargenetik, die Gewebezüchtung und die Bioinformatik.

Kim-Astrid Magister | idw
Weitere Informationen:
http://www.tu-dresden.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Adenoviren binden gezielt an Strukturen auf Tumorzellen
23.04.2018 | Eberhard Karls Universität Tübingen

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Metalle verbinden ohne Schweißen

23.04.2018 | HANNOVER MESSE

Revolutionär: Ein Algensaft deckt täglichen Vitamin-B12-Bedarf

23.04.2018 | Medizin Gesundheit

Wie zerfallen kleinste Bleiteilchen?

23.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics