Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stabile biologische Beschichtung für Implantate

02.11.2016

Die extrazelluläre Matrix (ECM) regelt alle wichtigen Funktionen von Zellen und ist für Wissenschaftler ein interessantes Biomaterial. Fraunhofer-Forscher haben eine ECM entwickelt, die künstliche reaktive Gruppen enthält und auch außerhalb des Körpers das natürliche Verhalten der Zellen fördert. Sie kann deshalb als stabile Beschichtung auf Implantate aufgebracht oder für Zellkulturgefäße und Wundauflagen verwendet werden.

Biologen, Chemiker und Mediziner müssen wissen, wie biologische Reaktionen im Innern des menschlichen Körpers ablaufen. Zum Beispiel um Implantate einzusetzen, neue Wirkstoffe zu entwickeln oder krankes Gewebe zu ersetzen. Eine wichtige Rolle spielt bei den Untersuchungen die extrazelluläre Matrix (ECM). Sie stellt im menschlichen Gewebe die natürliche Umgebung der Zellen dar und erfüllt wichtige Funktionen (siehe Infokasten). Durch ihre gewebetypische Zusammensetzung ist sie das ideale Material für Anwendungen in der Medizintechnik.


Eine Wissenschaftlerin des Fraunhofer IGB kultiviert Zellen, die eine funktionalisierte extrazelluläre Matrix – die clickECM – bilden.

Fraunhofer IGB

»Es ist jedoch sehr kompliziert, die Matrix so zu modifizieren, dass sie für unterschiedliche Aufgabenstellungen angepasst werden kann, sich aber trotzdem wie in natürlicher Umgebung verhält«, sagt Dr. Monika Bach aus der Abteilung Grenzflächentechnologie und Materialwissenschaft des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB.

Biologische Beschichtung für die Medizintechnik

Chemiker und Biologen des Stuttgarter Forschungsinstituts haben gemeinsam eine funktionale ECM entwickelt, die auch außerhalb des Körpers das natürliche Verhalten der Zellen fördert und flexibel an biologische oder materialtechnische Aufgabenstellungen angepasst werden kann. »Im Labor haben wir gezeigt: Das Biomaterial erfüllt trotz der eingebrachten künstlichen reaktiven Gruppen seine Funktionen und unterstützt das natürliche Verhalten der Zellen, die mit ihr in Kontakt stehen«, schildert Prof. Dr. Petra Kluger, Leiterin der Abteilung Zell- und Tissue Engineering, den Forschungsstand.

Derzeit suchen die IGB-Forscherinnen und -Forscher Kooperationspartner, um mit Hilfe der patentierten Technologie konkrete Produkte zu entwickeln: Zum Beispiel um Implantate zu beschichten, damit sie schneller vom Körper angenommen werden.

»Grundsätzlich wäre diese Technologie aber auch interessant, um neue Materialien zu entwickeln, die zur Wund- oder Knochenheilung eingesetzt werden könnten«, sagt Bach. Denkbar wäre zudem eine Beschichtung für Zellkulturgefäße im Labor. Sie liefert den jeweiligen Zellen eine ideale Umgebung, sodass diese während der Kultivierung ihr natürliches Wachstumsverhalten zeigen. »Denn Zellen reagieren sehr empfindlich auch auf kleine Veränderungen in ihrer Umgebung«, erklärt Bach.

Chemische Reaktion, die klickt

Um die ECM mit künstlichen chemischen Gruppen auszustatten, nutzen die Wissenschaftlerinnen und Wissenschaftler den natürlichen Stoffwechsel der Zellen und lassen sie die chemische Gruppe selbst einbauen. Dazu werden Zellen, die zuvor aus menschlichen Gewebeproben gewonnen wurden, in einer Zellkulturschale mit Zuckermolekülen gefüttert, die im Vergleich zu herkömmlichen Zuckern an einer Stelle eine reaktive Gruppe tragen. Die Zellen nehmen diesen modifizierten Zucker auf und nutzen ihn als Baustein, um andere Moleküle innerhalb der Zelle und in der ECM aufzubauen.

»Diese chemische Gruppe kann anschließend in einer selektiven chemischen Reaktion – Click-Reaktion – mit einem passenden Bindungspartner weiter reagieren. Das muss man sich wie bei einem Druckknopf vorstellen: Eine Hälfte, andere Hälfte – Klick!«, schildert Bach den Vorgang. Auf diese Weise kann eine Implantatoberfläche, die die andere Hälfte des Druckknopfs trägt, stabil mit der clickECM beschichtet – und das Einwachsen des Implantats in das umliegende Gewebe deutlich verbessert werden. Der Vorteil des Zusammenklickens: Die selektive chemische Reaktion hat eine hohe Ausbeute, läuft ohne Nebenreaktionen und unter physiologischen Bedingungen ab, ohne in natürliche Prozesse der Zelle einzugreifen.

Weitere Informationen:

https://www.fraunhofer.de/de/presse/presseinformationen/2016/november/stabile-bi...

Dr. rer. nat. Claudia Vorbeck | Fraunhofer Forschung Kompakt

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie