Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spelzmais bildet in den Blütenständen Blätter

20.04.2012
Forscherteam aus Jena und Köln identifiziert Spelzmais als Mutante
Bei einer als Spelzmais bezeichneten Maisvariante sitzen die Körner nicht nackt auf dem Kolben, sondern sind von langen Spelzen umgeben. Die Variante geht Wissenschaftlern vom Max-Planck-Institut für Pflanzenzüchtungsforschung in Köln und von der Friedrich-Schiller-Universität Jena zufolge auf ein Blatt-Gen im Maiskolben zurück, das dort normalerweise nicht aktiv ist. Spelzmais ist folglich kein wilder Vorfahre der Maispflanzen, sondern eine Mutante, die am falschen Ort Blätter bildet.

Spelzmais hat ein spektakuläres Erscheinungsbild, das die Naturforscher seit zwei Jahrhunderten beschäftigt. Bei dieser Variante sind alle Maiskörner in feine, im getrockneten Zustand wie dünnes Papier wirkende Hüllspelzen gewickelt. Diese haben Ähnlichkeit mit einer Blattscheide. Die in einer Rispe am Ende der Sprossachse angeordneten männlichen Blüten sind ebenfalls von langen Spelzen umgeben und entwickeln sogar hin und wieder Körner, die sonst nur in den Maiskolben zu finden sind. Die Blätter von Spelzmais entsprechen denen der normalen Maispflanzen. Für manche Indianer hatte Spelzmais eine rituelle Bedeutung, deshalb ist er auch auf dem ganzen amerikanischen Kontinent verbreitet worden.

Über eine mögliche Bedeutung bei der Domestikation von Mais ist lange gestritten worden. Einige Wissenschaftler hielten ihn für eine ursprüngliche Form und damit für einen wilden Vorfahren der heute üblichen Sorten mit nackten Körnern. Andere teilten diese Auffassung nicht – zu Recht, wie man inzwischen weiß. Der wilde Vorläufer der heute verbreiteten üblichen Maissorten ist nämlich nicht der Spelzmais, sondern das unscheinbare Süßgras Teosinte.

Heinz Saedler, Günter Theißen und weitere Kollegen haben nun herausgefunden, wie das spektakuläre Erscheinungsbild von Spelzmais zustande kommt. Ihre Ergebnisse bestätigen, dass diese Variante nichts mit der Domestikation des Mais zu tun hat, sondern eine Mutante mit Blättern am falschen Ort ist. Wichtige Impulse haben auch einige genetische Experimente aus den fünfziger Jahren gegeben. „Wir wussten aus den alten Kreuzungsexperimenten, dass die Mutation aus mindestens zwei Komponenten bestehen muss, die getrennt voneinander vererbt werden können. Wird nur eine Komponente vererbt, sind bei dieser Mutante die Hüllspelzen, die die Maiskörner umgeben, deutlich kleiner und unscheinbarer als die Hüllspelzen einer Mutante mit beiden Komponenten. Aber sie sind nicht so winzig wie die Hüllspelzen beim herkömmlichen Mais, wo die Körner nackt auf dem Maiskolben sitzen“, erklärt Heinz Saedler vom Max-Planck-Institut für Pflanzenzüchtungsforschung.

Die Forscher konnten zeigen, dass es sich bei den beiden Komponenten um zwei Kopien des gleichen Gens handelt, die auf Chromosom 4 hintereinander angeordnet sind. Dieses Gen ist beim Spelzmais zwar intakt, aber die Region, die über das Ablesen des Gens entscheidet, ist beschädigt. Mit diesem Defekt geht die Kontrolle über das planmäßige Ablesen des Gens in den richtigen Organen der Pflanze verloren. In mutierter Form wird dieses Gen deshalb auch im Maiskolben abgelesen und nicht mehr nur in den heranwachsenden Blättern. „Das Gen enthält die Information für einen Transkriptionsfaktor, mit dem weitere Erbanlagen abgelesen werden. Durch seinen außerplanmäßigen Auftritt in den männlichen und weiblichen Blütenständen schaltet er in den Hüllspelzen ein Programm ein, das normalerweise für die Blattentwicklung reserviert ist und in den Blütenständen fehl am Platze ist. Die Hüllspelzen nehmen in Folge dieses fehlerhaften Auftritts ein blattähnliches Wachstum auf und wachsen so weit heran, bis die Körner vollständig bedeckt sind“, sagt Günter Theißen von der Universität Jena.

Aus diesen Befunden lässt sich zudem erklären, warum es auch Spelzmais mit kleineren Spelzen gibt. „Wie ausgeprägt der Erscheinungsbild ist, hängt davon ab, ob das beschädigte Gen in einer oder in zwei Kopien pro Chromosom vorkommt und ob die Pflanze in Bezug auf dieses Gen rein- oder mischerbig ist“, sagt Theißen. „Bei einer Kopie ist die Wirkung auf das Programm zur Blattentwicklung nur halb so groß wie bei zwei Kopien. Wir haben es also mit einer additiven Genwirkung zu tun. Über den Phänotyp entscheidet folglich die Gen-Dosis“. Theißen und seine Kollegen konnten weiter zeigen, dass die mutierte Erbanlage zu einer ganzen Familie von Entwicklungskontrollgenen gehört, der sogenannten MADS-Box-Gen-Familie. Weitere Vertreter dieser Familie steuern andere Entwicklungsprozesse in der Pflanze.

Originalveröffentlichung:
Luzie U. Wingen, Thomas Münster, Wolfram Faigl, Wim Deleu, Hans Sommer, Heinz Saedler, Günter Theißen: Molecular genetic basis of pod corn (Tunicate maize), PNAS Early Edition, www.pnas.org/cgi/doi/10.1073/pnas.1111670109

Ansprechpartner:
Professor Dr. Günter Theißen
Friedrich-Schiller-Universität Jena
Philosophenweg 12, 07743 Jena
Tel.: 03641 / 949550
E-Mail: guenter.theissen[at]uni-jena.de

Professor em. Dr. Heinz Saedler
Max-Planck-Institut für Pflanzenzüchtungsforschung
Carl von Linné Weg 10, 50829 Köln
Tel.: 0221 / 5062-0
E-Mail: saedler[at]mpiz-koeln.mpg.de

Axel Burchardt | Friedrich-Schiller-Universität J
Weitere Informationen:
http://www.uni-jena.de
http://www.mpiz-koeln.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops