Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Späte Rehabilitation der Gliazellen - Mit Botox zum Erfolg

15.05.2012
Wissenschaftler der Universität Leipzig haben einen Meilenstein auf dem Gebiet der Gliazellforschung gesetzt.

Sie konnten in einer internationalen Zusammenarbeit den Nachweis führen, dass Nervenzellen und Gliazellen ähnliche Wirkmechanismen haben. Beide setzen zur Kommunikation Botenstoffe frei. Bislang wurde den Gliazellen diese Fähigkeit abgesprochen. Für die Beweisführung kam das Nervengift Botox zum Einsatz.


Illustration einer Gliazelle (braun), die mit Nervenzellen (blau) der Netzhaut kommuniziert. In Rot ist der Transmitter Glutamat dargestellt.

Der Nachwuchswissenschaftlerin Dr. Antje Grosche vom Paul-Flechsig-Instituts für Hirnforschung der Medizinischen Fakultät ist der Beweis dafür gelungen, das Gliazellen vesikulär den Botenstoff Glutamat freisetzen können. In weiteren Experimenten konnte gezeigt werden, dass diese Glutamat-freisetzung für die schnelle Volumenregulation der Netzhautzellen unabdingbar ist. Aufbauend auf diesen Erkenntnissen soll in zukünftigen Experimenten der Einfluss einer gestörten Glutamatfreisetzung aus Gliazellen auf die Entstehung von krankhaften Zellschwellungen (sog. Netzhaut-Ödemen), die als Komplikation zahlreicher Netzhauterkrankungen zur Erblindung führen, untersucht werden.

Zurück zu den Grundlagen
Im Nervengewebe gibt es hauptsächlich zwei Sorten von Zellen: Die "kleinen grauen" Nervenzellen und die althergebracht als "Nervenkitt" bezeichneten Gliazellen. Von ersteren ist schon lange bekannt, dass sie an Ihren Endigungen Synapsen haben, durch die Informationen als Signale von einer zur anderen Zelle übertragen werden. Für die Übertragung werden Botenstoffe, auch Neurotransmitter genannt, eingesetzt. Die Botenstoffe schwimmen allzeit bereit in kleinen Bläschen (Vesikeln) gespeichert umher. Im Fall eines auslösenden Signals bewirkt eine sehr komplexe Maschinerie, dass die Bläschen an die Zellwand herantreten, ihre Membran platzt und der Botenstoff freigegeben wird.

Dadurch setzt sich die Signalkette in der Nachbarnervenzelle ebenso fort und zwar in einem atemberaubenden Tempo und tausendfach in jeder Sekunde - beispielsweise wenn wir reden, das Gesicht verziehen oder Schmerz empfinden. Eine wichtige Erkenntnis für Medikamente, die ihre Wirkung häufig an den Synapsen entfalten. Und ein Grund, warum die Nervenzellen bislang als die "einzigartigen" Arbeiter im Nervensystem betrachtet wurden.

Gliazellen wurde dagegen bis in die jüngste Zeit hinein wenig Beachtung geschenkt. Ihr Entdecker Rudolf Virchow betrachtete sie im 19. Jahrhundert lediglich als das die Nervenzellen umgebende Material, als "Bindegewebe" des Nervensystems.

Im Rahmen eines europäischen Forschungsprojekts konnten Wissenschaftler des Leipziger Paul-Flechsig-Instituts für Hirnforschung nun den entscheidenden Schritt beisteuern, um den endgültigen Beweis für eine umstrittene Hypothese zu liefern: Ebenso wie Nervenzellen können Gliazellen Botenstoffe freisetzen und damit Informationen an Nachbarzellen weitergeben. Dafür wurde die lähmende Wirkung von Botox eingesetzt.

Botox als Gehilfe
In Nervenzellen verhindert das hocheffiziente Nervengift, dass die Synapsen aktiv und Botenstoffe aus den Bläschen freigesetzt werden. Dieser Effekt wird beispielsweise genutzt, um die Gesichtsfalten durch Lähmung der von den Nerven angesteuerten Gesichtsmuskeln zu glätten. Die beteiligten Wissenschaftler haben sich diesen Effekt für Gliazellen zunutze gemacht.
Zunächst wurden in Frankreich Mäuse mit Gliazellen gezüchtet, die Botox künstlich selbst herstellen und somit auch vermutete Mechanismen der Informationsverarbeitung in sich blockieren. Wenn das Gift schlicht von außen draufgegeben worden wäre, hätte es sowohl Nerven- als auch Gliazellen erreicht und ein spezifischer Effekt auf die Gliazellen wäre nicht nachweisbar gewesen.

In einem nächsten Schritt galt es, normale Gliazellen und die mit Botox manipulierten zu vergleichen. An dieser Stelle kam Leipzig mit ins Projektboot, weil es als führend auf dem Gebiet der Gliazellforschung gilt.

Dafür hat Dr. rer. nat. Antje Grosche (30) in Leipzig aus verschiedenen Techniken eigens eine neue Methode entwickelt, um frische Gliazellen zu isolieren und beobachten zu können, wie sie Botenstoffe über den Bläschenmechanismus freisetzen. "Von der Größe her arbeitet man dabei absolut an der Nachweisgrenze." Tatsächlich konnte sie bei Giazellen aus der Netzhaut feststellen, dass sie den Botenstoff Glutamat freisetzen.

Das Ergebnis: Normale Gliazellen haben Botenstoffe freigesetzt, Botox-Gliazellen waren dagegen völlig blockiert. Darüber hinaus konnte die Wissenschaftlerin einen teilweisen Funktionsverlust bei Botox-Gliazellen feststellen. In ihnen war die Interaktion zwischen Glia- und Nervenzellen ebenso gestört wie der Abtransport von Flüssigkeit aus der Netzhaut. Letzteres ist lebensbedrohlich für die Zellen, weil sie anschwellen und zu platzen drohen.

Schlussfolgerungen
"Die Ergebnisse der Mausstudie sind auf den Menschen übertragbar. Wir besitzen also zwei Sorten ziemlich cleverer Zellen im Nervengewebe, die gut zusammenarbeiten, damit wir als Ganzes gut funktionieren", fasst Arbeitsgruppenleiter Prof. Andreas Reichenbach die Ergebnisse zusammen. "Bildhaft kann man sagen, Nervenzellen verdienen das Geld in der Familie, sind aber zu beschäftigt, um sich um den Haushalt zu kümmern. Die wichtigen Aufgaben Nahrungsbeschaffung und Aufräumen, also Nährstoffe heran- und verbrauchte Botenstoffe nach der Informationsvermittlung wegzuschaffen, übernehmen die Gliazellen." Beide sind fast mit demselben Satz an Genen ausgestattet, nutzen sie entsprechend ihrer Aufgaben jedoch jeweils mehr oder weniger.

"Wir haben herausgefunden, dass beides sehr differenzierte Zellen sind, trotzdem können sie sich gegenseitig nicht ersetzen", ergänzt Dr. Antje Grosche. Zur Bedeutung der Ergebnisse sagt Prof. Reichenbach: "Für diese Art herausragende Grundlagenforschung, ist es meist nötig, dass mehrere Arbeitsgruppen zusammenarbeiten. Niemand hat alle Techniken perfekt zur Verfügung. Kooperationen umfassen wie in unserem Fall häufig mehrere Länder. Wir hatten das Glück, dass wir am Ende den wichtigsten Teil beisteuern konnten."

Die Forschungsergebnisse wurden aktuell im hochrangigen Wissenschaftsjournal "NEURON" veröffentlicht: "Relevance of Exocytotic Glutamate Release from Retinal Glia"

Dr. Manuela Rutsatz | Universität Leipzig
Weitere Informationen:
http://www.uni-leipzig.de
http://www.sciencedirect.com/science/article/pii/S0896627312003352

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der erste Blick auf ein einzelnes Protein
18.01.2017 | Max-Planck-Institut für Festkörperforschung, Stuttgart

nachricht Unterschiedliche Rekombinationsraten halten besonders egoistische Gene im Zaum
18.01.2017 | Max-Planck-Institut für Evolutionsbiologie, Plön

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017 | Biowissenschaften Chemie

Zur Sicherheit: Rettungsautos unterbrechen Radio

18.01.2017 | Verkehr Logistik