Sonnenschutz für Pflanzen – Veröffentlichung in Nature Plants

Lokalisation von PsbS und die Organisation von Photosystem II im inaktiven (Dunkel) und aktiven (Hell)-Zustand. Peter Jahns / Heinrich-Heine-Universität Düsseldorf

Zu viel des Guten schadet auch Pflanzen. Zwar benötigen sie das Sonnenlicht unbedingt, um aus Kohlendioxid und Wasser den Energieträger und Zellbaustein Zucker herzustellen. Doch zu viel Licht, etwa an hellen Sonnentagen, schädigt die empfindlichen Lichtreaktoren der Pflanzen.

Diese Photosysteme, die Lichtenergie in chemische Energie umwandeln, enthalten spezielle lichtsammelnde Proteine, so genannte LHC-Komplexe. Diese wiederum binden die Chlorophyll-Moleküle, die das Licht absorbieren. Wird zu viel Licht und damit Energie eingefangen, so bilden sich Sauerstoffverbindungen (ROS), die für die Pflanze toxisch sind.

Die Pflanzen schützen sich vor den ROS, indem sie die überschüssige Energie in Form von Wärme ableiten. Dazu bauen sie gezielt ihre Photosysteme um und setzen zusätzlich Schutzpigmente ein, die Xanthophylle.

Doch wie schafft es die Pflanze, diese Mechanismen nur dann zu nutzen, wenn sie tatsächlich zu viel Licht trifft; ohne sich unnötig von ihrem Lebenselixier abzuschneiden? Und wie kann sie dieser Schutz sehr schnell an- und abschalten, wenn an stark bewölkten Tagen die Lichtintensität in kurzer Zeit stark schwankt?

Man weiß, dass hierbei eine Veränderung des pH-Wertes in den so genannten Chloroplasten eine Rolle spielt, die von dem Protein PsbS erkannt wird. Die detaillierten Vorgänge wurden bisher aber noch nicht experimentell nachgewiesen.

Forscher der Heinrich-Heine-Universität Düsseldorf um Prof. Dr. Peter Jahns (Biologie) und Prof. Dr. Kai Stühler (Medizin) konnten nun zusammen mit Dr. Michael Melzer und seinem Team am Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung in Gatersleben zum ersten Mal an der Acker-Schmalwand (Arabidopsis thaliana) gezielt die inaktiven und die aktiven PsbS-Proteine untersuchen.

In der jetzt bei Nature Plants erschienenen Publikation zeigten sie, dass das PsbS im inaktiven Zustand als Verbund zweier Proteine (als so genanntes Dimer) vorliegt. Wird es aktiviert, spaltet es sich in zwei einzelne Proteine (Monomere). Die Monomere wechselwirken mit dem Photosystem erheblich stärker als das Dimer und verändern dabei die Struktur des LHC-Komplexes.

Wenn man den Lichtschutzmechanismus versteht, wird es nun möglich, gezielt in die Wechselwirkung des PsbS mit den anderen Proteinen einzugreifen. Damit kann möglicherweise der Lichtschutz und die Photosynthese der Pflanzen verbessert werden.

Publikation
Viviana Correa-Galvis, Gereon Poschmann, Michael Melzer, Kai Stühler and Peter Jahns (2016), PsbS interactions involved in the activation of energy dissipation in Arabidopsis. Nature Plants
DOI: 10.1038/nplants.2015.225

Kontakt
Prof. Dr. Peter Jahns
Arbeitsgruppe Photosynthese und Stressphysiologie der Pflanzen
Heinrich-Heine-Universität Düsseldorf
Tel.: +49-(0)211 81-13862
pjahns@hhu.de

Dr. Michael Melzer
Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung
Tel.: +49-(0)39482 5471
melzer@ipk-gatersleben.de

http://dx.doi.org/10.1038/nplants.2015.225 (Artikel)
http://www.photosynthesis.hhu.de/ (AG Photosynthese und Stressphysiologie der Pflanzen)

Media Contact

Dr.rer.nat. Arne Claussen idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer