Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Sog der Lockstoffe - Wie Zellen die Richtung wechseln

04.07.2011
Viele Zellen höherer Organismen sind in der Lage, sich gezielt fortzubewegen.

Gelotst werden sie dabei von chemischen Lockstoffen. Einem Team um Dr. Doris Heinrich von der Fakultät für Physik und dem „Center for NanoScience“ (CeNS) der LMU gelang es nun, einen neuen Versuchsaufbau zu entwickeln, mit dem ein ganzes Zellensemble schnell wechselnden Lockstoffgradienten ausgesetzt werden kann.

„Mit diesem neuen experimentellen Ansatz können wir die räumliche und zeitliche Reaktion lebender Zellen auf Richtungsänderungen untersuchen und so einen völlig neuen Einblick in die zugrunde liegenden Signalwege gewinnen“, berichtet Heinrich. Dies hat auch hohe medizinische Relevanz, da die gezielte Fortbewegung von Zellen etwa für das embryonale Wachstum oder für die Immunabwehr essenziell ist. Die Wissenschaftler konnten sogar zeigen, dass es möglich ist, eine „chemotaktische Falle“ zu bauen, die Zellen durch sehr schnelle Änderungen des Lockstoffgradienten immobilisiert. (PNAS Early Edition, 27. Juni 2011)

Die gerichtete Bewegung der Zellen höherer Organismen erfolgt mithilfe der sogenannten Chemotaxis, das heißt die Zelle detektiert einen chemischen Lockstoff, an dem sie sich ausrichtet. „Wir beschäftigen uns mit der Frage, wie sich Zellen, die zunächst gerichtet einem Lockstoff folgen, in andere Richtungen umorientieren. Dazu entwickelten wir einen sogenannten mikrofluidischen Gradientengenerator, mit dem der Lockstoffgradient schnell so geändert werden kann, dass die Zellen wiederholt in entgegen gesetzte Richtungen gelotst werden“, erzählt Börn Meier, der Erstautor der Studie.

Die Zelle folgt dem Lockstoff mit einer kriechenden Bewegung, die darauf basiert, dass ein Netzwerk aus Aktin-Filamenten innerhalb der Zelle so strukturiert und umgebaut wird, dass Ausstülpungen – sogenannte Pseudopodien – in Bewegungsrichtung der Zelle ausgebildet werden. Zahlreiche Studien zeigen bereits, dass diese Aktin-Reorganisation durch die intrazelluläre Umverteilung bestimmter Signalmoleküle kontrolliert wird. „Die zugrunde liegenden zeitlichen und räumlichen Verteilungen biochemischer Mechanismen aufzuspüren ist allerdings schwierig, denn man benötigt dafür eine sehr präzise Kontrolle über den Lockstoffgradienten“, erklärt Heinrich.

Der neue Gradientengenerator ermöglicht es nun, einen tieferen Einblick in die zellulären Signalwege zu erhalten. Die Wissenschaftler beschreiben zwei unterschiedliche Wendetechniken lebender Zellen: Abhängig von den jeweiligen Bedingungen können Zellen entweder „U-Turn“-artig umdrehen, oder sich umstrukturieren, indem sie das Aktinskelett an der bisherigen Zellfront ab- und auf der gegenüberliegenden Seite wieder aufbauen. An diesem Umbau sind viele Helferproteine beteiligt, an deren räumlicher und zeitlicher Umverteilung die Wissenschaftler interessiert sind.

Die neue Technik macht es sogar möglich, die Gradientenfelder so schnell zu variieren, dass die Zelle auf den Umschaltvorgang zwar noch durch interne Signale reagieren kann, es aber nicht mehr schafft, sich auch in die jeweilige Richtung zu bewegen – und in ihrer Position verharrt. Die Zelle wird somit in eine chemotaktische Falle gelockt.

In einem weiteren Versuch wurden die Zellen nicht nur wechselnden Lockstoffgradienten ausgesetzt, sondern gleichzeitig medizinische Wirkstoffe zugegeben, um deren Einfluss auf die chemotaktischen Signalkaskaden an lebenden Zellen zu testen. Dabei konnten die Wissenschaftler an einem speziellen Beispiel zeigen, dass der Einfluss eines Inhibitors das Muster der gerichteten Bewegung der Zellen deutlich verändert. „Die Einsichten in komplexe intrazelluläre Signalwege, die das neue Setup erlaubt, sind für viele andere Forschungsgebiete von großer Relevanz, etwa in der Zell- und Entwicklungsbiologie oder in der Biochemie und Medizin“, betont Heinrich. (göd)

Publikation:
„Chemotactic cell trapping in controlled alternating gradient fields”;
B. Meier, A. Zielinski, C. Weber, D. Arcizet, S. Youssef, T. Franosch, J. O. Rädler, D.Heinrich;
PNAS Early Edition; 27. Juni 2011;
doi: 10.1073/pnas.1014853108
Ansprechpartner:
Dr. Doris Heinrich
Fakultät für Physik
Tel.: 089 / 2180 – 6760
E-Mail: Doris.Heinrich@lmu.de
Börn Meier
Fakultät für Physik
Tel. 089 / 2180 – 1453
E-Mail: Boern.Meier@physik.lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.lmu.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ionen gegen Herzrhythmusstörungen – Nicht-invasive Alternative zu Katheter-Eingriff
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Leibwächter im Darm mit chemischer Waffe
20.01.2017 | Max-Planck-Institut für chemische Ökologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise