Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

So kommen Wildtiere warm durch den Winter

10.11.2008
"Warum kriegen Enten im Winter keine kalten Füße?", fragen sich viele Spaziergänger, wenn sie die Wasservögel auf zugefrorenen Teichen stehen sehen. Dr. Dieter Martin, Biologe der Deutschen Wildtier Stiftung, kennt die Antwort.

"Warum kriegen Enten im Winter keine kalten Füße?", fragen sich viele Spaziergänger, wenn sie die Wasservögel auf zugefrorenen Teichen stehen sehen. Dr. Dieter Martin, Biologe der Deutschen Wildtier Stiftung, kennt die Antwort.

"Sie haben kalte Entenfüße, in die nur sehr wenig Blut strömt." Auf dem Weg in die Füße kühlt das Blut von etwa 40 Grad auf sechs Grad ab. "Hätten Enten warme Füße, würden sie das Eis, auf dem sie stehen, antauen und dann mit dem Schmelzwasser festfrieren", erläutert Dr. Martin.

Jetzt im Spätherbst müssen sich die Wildtiere in Deutschland "warm anziehen", um den Winter zu überleben. Bei den unterschiedlichen Überlebensstrategien spielt Luft eine wichtige Rolle. Ein dichtes Federkleid schützt die daheimgebliebenen Vögel vor der Kälte. "Doch zwischen den einzelnen Federn liegen Luftschichten, die als zusätzliche Wärmeisolatoren fungieren: Diese Luftpolster schützen die Vögelkörper vor dem Auskühlen", sagt Dr. Martin.

Viele Vögel machen sich obendrein "dicke": Sie plustern sich auf, um die Luftschichten zwischen den Federn noch zu vergrößern. Federn von Wasservögeln sind außerdem gefettet und wasserabweisend. Enten zum Beispiel haben eine spezielle Fettdrüse am Schwanz, die Bürzeldrüse. Mit dem Schnabel verteilen sie das Fett aus dieser Drüse im Federkleid.

Wer jetzt draußen überleben will, muss ein dickes Fell haben: Der Fischotter hat z.B. mit 50 000 Haaren pro Quadratzentimeter sicher den dichtesten Winterpelz. Viele Wildtiere haben ein Oberund ein Unterfell. Auch Säugetiere verdanken Luftschichten zwischen den Haaren, dass sie vor strenger Kälte geschützt sind. Meist ist das Unterfell dicht und kurz: ist es knackig kalt, stellen die Tiere diese Haare auf.

"Große Tiere kühlen wesentlich langsamer aus als kleine", sagt Dr. Martin von der Deutschen Wildtier Stiftung. Dem Feldhasen wachsen im Winter zusätzliche Wollhaare: Sein Fell wird viel dichter und isoliert deshalb besser gegen die Kälte. Auch im Haarkleid des Hasen staut sich Luft, die gut gegen Kälte wirkt. Beim Rothirsch bestehen die Haare aus drei Schichten: der Mark- und der Rindenschicht sowie dem Oberhäutchen. Die Markschicht ist ebenfalls lufthaltig und sorgt für einen effektiven Wärmeschutz. Im Winter sind die Wollhaare besonders dicht. Das Haar ist doppelt so lang wie im Sommerfell. Der Fellwechsel ist jetzt im Herbst.

Während das rötlichbraune Sommerfell dem Rothirsch seinen Namen gab, ist das Winterfell graubraun gefärbt. Das Deckhaar der Wildschweine ist jetzt dunkelgrau bis braun-schwarz. Die borstigen Deckhaare sind bis zu 25 Zentimeter länger als im Sommer. Darunter liegt die kurze dicke Unterwolle. Auch im Wildschwein-Fell sind zwischen den Haaren Luftkammern eingeschlossen, die die Abgabe von Körperwärme verhindert. Jetzt im November ist der Fellwechsel bei Wildschweinen abgeschlossen. Sie haben sich an Bäumen gescheuert, um die alten Haare loszuwerden.

Wildschweine rotten sich im Winter mit ihren Artgenossen zusammen, um sich zu wärmen. Außerdem haben sie sich - wie viele Wildtiere - eine dicke Speckschicht angefressen, um gut durch den Winter zu kommen.

E.Goris@DeutscheWildierStiftung.de

Eva Goris | idw
Weitere Informationen:
http://www.DeutscheWildtierStiftung.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics