Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Shuttle-Service für Moleküle - Logistik in kleinsten Dimensionen

24.04.2009
Die Kommunikation muss stimmen: Dies gilt auch für die lebende Zelle. Winzige Poren in der Zellkern-Hülle sind lebenswichtige Transport- und Kommunikationskanäle, die den gesamten Güterverkehr in und aus dem Zellkern kontrollieren.

Diese "Kernporen" sind hochselektive Tore: Während kleine Moleküle meist ungehindert passieren, sind große für ihren Transport auf einen Shuttle-Service angewiesen. Doch wie erkennt ein molekularer Transporter sein Frachtgut? Und wie entscheidet er, wo Fracht geladen oder entladen werden muss? Einen entscheidenden molekularen Mechanismus haben jetzt Forscher vom Max-Planck-Institut für biophysikalische Chemie und der Universität Göttingen aufgeklärt.


Am Kern-Exportrezeptor CRM1 (blau) binden der molekulare Schalter RanGTP (rot) und das Frachtmolekül Snurportin (orange) weit entfernt voneinander. Im Hintergrund: eine elektronenmikroskopische Aufnahme von Kernporenkomplexen - den gigantischen Transportkanälen in der Zellkernhülle.
MPIbpc / Universität Göttingen

Lebende Zellen gleichen in vieler Hinsicht Miniatur-Fabriken mit winzigen Produktionsstätten, Förderbändern und Maschinen. Anders als Bakterienzellen, zeichnen sich die komplexer gebauten Zellen von Pilzen, Pflanzen und Tieren dabei durch strikte Arbeitsteilung aus. Sie sind in verschiedene Abteilungen - Kompartimente - gegliedert, von Verpackungs- und Sortierstationen, Proteinfabriken und Kraftwerken bis hin zur Kommandozentrale, dem Zellkern. In diesem ist das gesamte Genom ( Erbgut ) archiviert, das die Baupläne für die Produktion von Proteinen enthält. Die Proteinfabriken allerdings, die nach diesen Bauplänen arbeiten, befinden sich außerhalb des Kerns im sogenannten Zytosol. Wie gelangen die Baupläne in die Proteinfabriken?

"Rushhour" an der Kernhülle

Um dieses logistische Problem zu lösen, muss die Zelle einigen Aufwand betreiben. Dazu werden Kopien der einzelnen Gene in Form von Boten-Ribonukleinsäure (Boten-RNA) erstellt und aus dem Zellkern exportiert. Proteinfabriken - die Ribosomen - verwenden diese dann im Zytosol zur Protein-Herstellung. Die Boten-RNA ist damit ein wahrer Exportschlager. Umgekehrt erfolgt auch ein massiver Import in den Kern. In jeder Minute werden damit mehr als eine Million Moleküle transportiert, darunter viele Proteine. Die Folge ist ein immenser Güterverkehr zwischen Zellkern und Zytosol, der der Rushhour einer Großstadt in nichts nachsteht. So entspricht der Materialstrom, der täglich durch die unzähligen Kernporen eines Menschen geleitet wird, in etwa unserem Körpergewicht.

Shuttle-Service für große Moleküle

Mit einem zehntausendstel Millimeter Durchmesser sind die Kernporen nanoskopisch klein. Selbst im besten Lichtmikroskop ist eine einzelne Kernpore kaum mehr als ein winziger Punkt. Kernporen arbeiten als hochselektive Tore und Sortieranlagen: Während sie die meisten kleinen Moleküle ungehindert passieren lassen, verweigern sie sperrigem Material den Durchtritt. Können sich große Moleküle allerdings durch einen "Passierschein" ausweisen, dann übernehmen Shuttle-Moleküle (sogenannte "Exportine" oder "Importine") deren Transport. Anders als ihre Fracht haben diese Shuttle das Privileg, die Kernporen nahezu ungehindert zu passieren.

"Be- und Entladung dieser Transporter steuert ein molekularer Schalter namens "Ran". Das kleine Molekül "GTP" schaltet Ran im Zellkern gewissermaßen "an". Exportine erhalten von RanGTP das Zeichen zum Laden, Importine das Signal zum Entladen ihrer Fracht", erklärt Ralf Ficner, Leiter der Abteilung Molekulare Strukturbiologie an der Universität Göttingen. Doch wie setzt RanGTP die Fracht-Beladung von Exportinen in Gang? Und wie erkennt und liest ein Exportin den "Passierschein" seines Frachtgutes? Exportin 1 (auch bekannt als CRM1) ist ein wahrer Allrounder unter den Transportern. Es exportiert hunderte, vielleicht tausende verschiedene Zell-Bestandteile aus dem Kern, angefangen bei RNA und Proteinen bis hin zu ganzen Ribosomen. Nicht zuletzt bedienen sich auch einige Viren wie das HIV dieses Transportweges. "Eine solche Vielfalt an Passierscheinen zu lesen, ist ein wahrer Spagat für das Allround-Shuttle. Es soll keine Fracht übersehen, aber auch keine 'blinden Passagiere' an Bord nehmen", so Dirk Görlich, Leiter der Abteilung Zelluläre Logistik am Max-Planck-Institut für biophysikalische Chemie.

Transportkomplex in atomarer Auflösung

Einen wichtigen Teil dieses Rätsels haben die Göttinger Wissenschaftler um Ficner und Görlich jetzt gelöst. Den Nachwuchswissenschaftlern Thomas Güttler und Thomas Monecke gelang es, die entscheidende experimentelle Hürde zu meistern, an der sich Wissenschaftler seit über zehn Jahren versuchen: Sie konnten CRM1 im Komplex mit dem molekularen Schalter RanGTP und einem Frachtmolekül namens Snurportin kristallisieren. Mithilfe der Röntgenstrukturanalyse lässt sich damit der Transportkomplex wie unter einer Art Supermikroskop in atomarem Detail untersuchen.

"Wir sehen jetzt, dass Schalter und Frachtmolekül an völlig unterschiedlichen Stellen von CRM1 sitzen - die beiden sehen sich praktisch nicht. RanGTP scheint bei Bindung an CRM1 wichtige Strukturänderungen im Shuttle auszulösen", erklärt Thomas Monecke. Erst diese Strukturänderungen befähigen den Transporter, seine Fracht zu laden. Wie die Forscher herausfanden, erkennt und bindet CRM1 Snurportin gleich mehrfach - über drei unterschiedliche Stellen seiner großen Oberfläche. "Dass CRM1 Fracht über seine Außenseite bindet, könnte auch der entscheidende Trick sein, der dieses Exportin zum wahren Transport-Allrounder macht. Denn Transporter, die auf wenige Fracht-Moleküle spezialisiert sind, wickeln diese in ihrem Inneren ein - und dort findet nicht jedes Molekül Platz", erklärt Thomas Güttler. Dagegen kann auf der Oberfläche von CRM1 Fracht nahezu beliebiger Größe und Form binden.

Das nächste Ziel der Wissenschaftler ist es nun, die Bindung weiterer Frachtmoleküle an CRM1 zu untersuchen. "CRM1 ist ein ganz entscheidender Spieler, wenn wir verstehen wollen, wie komplexe Zellen überhaupt funktionieren. Es ist nicht irgendein Transporter der Zelle, sondern das Arbeitstier des Kern-Exports schlechthin", so Dirk Görlich.

Originalveröffentlichung:
Thomas Monecke, Thomas Güttler, Piotr Neumann, Achim Dickmanns, Dirk Görlich, Ralf Ficner. Crystal structure of the nuclear export receptor CRM1 in complex with Snurportin1 und RanGTP. Science Express, 23. April 2009 (Online-Publikation) | DOI: 10.1126/science.1173388
Kontakt:
Prof. Dr. Ralf Ficner, Abteilung Molekulare Strukturbiologie
Georg-August-Universität Göttingen
Tel.: +49 551 39-14072
E-Mail: rficner@uni-goettingen.de
Prof. Dr. Dirk Görlich, Abteilung Zelluläre Logistik
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201 -2401/-2452
E-Mail: dgoerli@gwdg.de
Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201 -1304
E-Mail: crotte@gwdg.de

Dr. Carmen Rotte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.img.bio.uni-goettingen.de/ms-www/index.html
http://www.mpibpc.mpg.de/research/dep/goerlich/index.html
http://www.mpibpc.mpg.de/groups/pr/PR/2009/09_08/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden
06.12.2016 | Universität Osnabrück

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften