Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Seit wann kann man Luftschall hören?

30.06.2015

Einige Vorfahren der Säugetiere, die die Erde vor 260 Mio. Jahren bevölkerten, konnten bereits Schall aus der Luft hören. Denn sie verfügten schon über ein Trommelfell am Unterkiefer und eine Gehörschnecke – eine wesentliche Voraussetzung für das Entschlüsseln akustischer Reize. Den Anfängen unseres Hörsinns spürte Michael Laaß von der Universität Duisburg-Essen (UDE) nach und veröffentlichte seine Ergebnisse nun in einer renommierten Fachzeitschrift.

Laaß: „Dass wir Schall aus der Luft wahrnehmen können, verdanken wir u.a. unserem Trommelfell. Die akustischen Signale werden dann mit Hilfe des Mittelohrs verstärkt und in der Gehörschnecke zu Nervenimpulsen umgewandelt, damit diese im Gehirn verarbeitet werden können.“ Da alle Landwirbeltiere auf aquatische Vorfahren zurückgehen, konnten die ersten dieser Art allenfalls nur Bodenerschütterungen mit Hilfe des Unterkiefers „hören“, ähnlich wie dies heute bei einigen Schlangen funktioniert. Unklar war bislang, so Laaß, ob und ab wann sich bei den Säugetiervorfahren, den Therapsiden, bereits ein Trommelfell und ein schallverstärkendes Mittelohr entwickelten.


Urzeitlicher Tierschädel

© UDE

Schon vor fast 200 Jahren fand man heraus, dass unsere Gehörknöchelchen, Hammer und Amboss, den Knochen entsprechen, welche bei heutigen Reptilien und bei den Vorläufern der Säugetiere das Unterkiefergelenk bilden. Im Laufe der Evolution lösten sich diese Knochen vom Schädel und Unterkiefer, dienten dann ausschließlich zum Hören und es entstand ein neues Kiefergelenk. Laaß:“ Daher war fraglich, ob die Therapsiden schon effektiv Luftschall hören konnten. Ihr robust gebautes Kiefergelenk hätte dann eine Doppelfunktion erfüllen müssen: Kauen und Geräusche weiterleiten.“

Für seine Dissertation untersuchte Laaß die Ohrregion eines 260 Mio. Jahre alten Schädels des Therapsiden Pristerodon aus Südafrika mit Hilfe der Neutronentomographie. Dabei gelang ihm der früheste Nachweis einer Gehörschnecke bei den Ahnen der Säugetiere. Darüber hinaus konnte er die Funktionsweise des Mittelohrs entschlüsseln. Laaß: „Wenn die Kiefermuskulatur entspannt war, konnten feine Schwingungen vom Unterkiefer über das Kiefergelenk hinweg zum Innenohr übertragen werden. Außerdem war das Mittelohr des Pristerodon bereits in der Lage, Luftschall ausreichend zu verstärken und damit hörbar zu machen.“

Anatomische Untersuchungen legen zudem nahe, dass Pristerodon bereits eine aufrechtere Körperhaltung besaß. Sein Unterkiefer hatte also seltener Bodenkontakt, so dass das Hören seismischer Signale kaum mehr möglich war. Laaß: „Dies könnte der Grund dafür sein, dass es die Fähigkeit entwickelte, Luftschall zu hören. Dies war schlicht lebensnotwendig, um rechtzeitig Raubtiere wahrnehmen zu können oder mit Artgenossen zu kommunizieren.“

Originalpublikation: Laaß, Michael 2015. The origins of the cochlea and impedance matching hearing in synapsids. Acta Palaeontologica Polonica. doi: http://dx.doi.org/10.4202/app.00140.2014

Weitere Informationen: Michael Laaß, Tel. 0176/617 55 621, michael.laass@gmx.de

Redaktion: Beate Kostka, Tel. 0203/379-2430

Weitere Informationen:

http://dx.doi.org/10.4202/app.00140.2014

Beate Kostka | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-duisburg-essen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte