Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Seit wann kann man Luftschall hören?

30.06.2015

Einige Vorfahren der Säugetiere, die die Erde vor 260 Mio. Jahren bevölkerten, konnten bereits Schall aus der Luft hören. Denn sie verfügten schon über ein Trommelfell am Unterkiefer und eine Gehörschnecke – eine wesentliche Voraussetzung für das Entschlüsseln akustischer Reize. Den Anfängen unseres Hörsinns spürte Michael Laaß von der Universität Duisburg-Essen (UDE) nach und veröffentlichte seine Ergebnisse nun in einer renommierten Fachzeitschrift.

Laaß: „Dass wir Schall aus der Luft wahrnehmen können, verdanken wir u.a. unserem Trommelfell. Die akustischen Signale werden dann mit Hilfe des Mittelohrs verstärkt und in der Gehörschnecke zu Nervenimpulsen umgewandelt, damit diese im Gehirn verarbeitet werden können.“ Da alle Landwirbeltiere auf aquatische Vorfahren zurückgehen, konnten die ersten dieser Art allenfalls nur Bodenerschütterungen mit Hilfe des Unterkiefers „hören“, ähnlich wie dies heute bei einigen Schlangen funktioniert. Unklar war bislang, so Laaß, ob und ab wann sich bei den Säugetiervorfahren, den Therapsiden, bereits ein Trommelfell und ein schallverstärkendes Mittelohr entwickelten.


Urzeitlicher Tierschädel

© UDE

Schon vor fast 200 Jahren fand man heraus, dass unsere Gehörknöchelchen, Hammer und Amboss, den Knochen entsprechen, welche bei heutigen Reptilien und bei den Vorläufern der Säugetiere das Unterkiefergelenk bilden. Im Laufe der Evolution lösten sich diese Knochen vom Schädel und Unterkiefer, dienten dann ausschließlich zum Hören und es entstand ein neues Kiefergelenk. Laaß:“ Daher war fraglich, ob die Therapsiden schon effektiv Luftschall hören konnten. Ihr robust gebautes Kiefergelenk hätte dann eine Doppelfunktion erfüllen müssen: Kauen und Geräusche weiterleiten.“

Für seine Dissertation untersuchte Laaß die Ohrregion eines 260 Mio. Jahre alten Schädels des Therapsiden Pristerodon aus Südafrika mit Hilfe der Neutronentomographie. Dabei gelang ihm der früheste Nachweis einer Gehörschnecke bei den Ahnen der Säugetiere. Darüber hinaus konnte er die Funktionsweise des Mittelohrs entschlüsseln. Laaß: „Wenn die Kiefermuskulatur entspannt war, konnten feine Schwingungen vom Unterkiefer über das Kiefergelenk hinweg zum Innenohr übertragen werden. Außerdem war das Mittelohr des Pristerodon bereits in der Lage, Luftschall ausreichend zu verstärken und damit hörbar zu machen.“

Anatomische Untersuchungen legen zudem nahe, dass Pristerodon bereits eine aufrechtere Körperhaltung besaß. Sein Unterkiefer hatte also seltener Bodenkontakt, so dass das Hören seismischer Signale kaum mehr möglich war. Laaß: „Dies könnte der Grund dafür sein, dass es die Fähigkeit entwickelte, Luftschall zu hören. Dies war schlicht lebensnotwendig, um rechtzeitig Raubtiere wahrnehmen zu können oder mit Artgenossen zu kommunizieren.“

Originalpublikation: Laaß, Michael 2015. The origins of the cochlea and impedance matching hearing in synapsids. Acta Palaeontologica Polonica. doi: http://dx.doi.org/10.4202/app.00140.2014

Weitere Informationen: Michael Laaß, Tel. 0176/617 55 621, michael.laass@gmx.de

Redaktion: Beate Kostka, Tel. 0203/379-2430

Weitere Informationen:

http://dx.doi.org/10.4202/app.00140.2014

Beate Kostka | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-duisburg-essen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Neue Arten in der Nordsee-Kita
05.12.2016 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie sich Zellen gegen Salmonellen verteidigen

05.12.2016 | Biowissenschaften Chemie

Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen

05.12.2016 | Förderungen Preise

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik