Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwerhörige fühlen anders

21.11.2011
Menschen mit einer bestimmten Form der erblichen Schwerhörigkeit nehmen Vibrationen in ihren Fingern empfindlicher wahr als andere Menschen, haben Prof. Thomas Jentsch vom Leibniz-Institut für Molekulare Pharmakologie (FMP)/Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch und Prof. Gary Lewin (MDC) in Zusammenarbeit mit Klinikern aus Madrid, Spanien und Nijmegen, Niederlande, herausgefunden.

Die in Nature Neuroscience veröffentlichte Arbeit enthüllt Einzelheiten über den bislang wenig verstandenen Tastsinn: Damit wir fühlen können, müssen spezialisierte Zellen in der Haut wie Instrumente in einem Orchester gestimmt werden.


Antikörperfärbung eines Haarfollikels: Durch Kopplung der Antikörper an verschiedene Farbstoffe können unterschiedliche Strukturen mikroskopisch sichtbar gemacht werden. Man sieht im Haarfollikel endende Nervenendigungen (grün), in denen elektrische Impulse durch mechanische Reize der Haut erzeugt werden. In diesen Endigungen sind KCNQ4 Kaliumkanäle lokalisiert (rot), welche die Generierung dieser Nervenimpulse regulieren. Ovale und runde Strukturen in Blau zeigen Zellkerne von Zellen in der Haut. Grafik: M. Heidenreich

Die Angehörigen der spanischen und niederländischen Familien staunten nicht schlecht, als die Berliner Forscher mit ihren Apparaturen auftauchten. Viele von ihnen leiden an der erblich bedingten Schwerhörigkeit vom Typ DFNA2, doch die Wissenschaftler interessierten sich weniger für ihr Hörvermögen als für ihren Tastsinn. Bei den Schwerhörigen ist durch eine Mutation die Funktion mancher Haarzellen im Ohr gestört. Diese Mutation, so vermuteten die Forscher, könnte sich auch auf den Tastsinn auswirken.

In unserem Ohr schwingen feinste Härchen im Rhythmus der Schallwellen. Die Schwingungen bewirken einen Einstrom positiv geladener Kalium-Ionen in die Haarzellen. Dieser elektrische Strom erzeugt ein Nervensignal, das zum Gehirn weitergeleitet wird – wir hören. Die Kalium-Ionen fließen durch einen Kanal in der Zellmembran wieder aus den Haarzellen hinaus. Und eben dieser Kalium-Kanal, ein Eiweißmolekül namens KCNQ4, ist durch die Mutation bei den Schwerhörigen zerstört. Die Sinneszellen sterben nach und nach durch Überlastung ab. „Wir haben aber herausgefunden, dass KCNQ4 nicht nur im Ohr vorkommt, sondern auch in bestimmten Sinneszellen der Haut“, erklärt Thomas Jentsch. „Das hat uns auf die Idee gebracht, dass die Mutation sich auch auf den Tastsinn auswirken könnte. Dies konnten wir dann in einer engen Zusammenarbeit mit dem Labor von Gary Lewin, einem auf Tastsinn spezialisierten Kollegen vom MDC, in der Tat zeigen.“

Egal ob wir unser Kind streicheln, in der Handtasche nach einem bestimmten Gegenstand suchen oder einen Stift in die Hand nehmen – jede Berührung vermittelt uns eine Vielzahl von präzisen und lebenswichtigen Informationen über unsere Umwelt. Zwischen einer rauen und einer glatten Oberfläche unterscheiden wir anhand der Vibrationen, die beim Darüberstreichen in der Haut entstehen. Für die verschiedenen Berührungsreize gibt es in der Haut Sinneszellen mit unterschiedlichen Strukturen – durch die Verformung der zarten Gebilde entstehen elektrische Nervensignale. Wie das genau geschieht, ist noch ein Rätsel – von den fünf Sinnen des Aristoteles ist der Tastsinn bislang der am wenigsten verstandene.

Offenbar gibt es aber Parallelen zum Hören, wie die Ergebnisse von Matthias Heidenreich und Stefan Lechner aus den Gruppen von Thomas Jentsch und Gary Lewin zeigen. Zunächst untersuchten sie eine als Taubheitsmodell im Labor Jentsch hergestellte Mauslinie, die exakt die gleiche Mutation im Kaliumkanal trägt wie ein Patient mit dieser Form der Taubheit. Die Tastrezeptoren in der Haut, die den KCNQ4 Kaliumkanal besitzen, sterben durch den defekten Kanal nicht ab, wie im Ohr, zeigten aber eine veränderte elektrische Antwort auf mechanische Reize in der mutierten Maus. Sie reagierten viel empfindlicher auf Vibrationsreize mit niedrigen Frequenzen. Das Auslassventil für Kaliumionen scheint hier normalerweise als eine Art Filter zu funktionieren, der die Erregbarkeit der Zellen dämpft. Durch die Dämpfung nehmen wir mit diesen Sinneszellen an dieser Stelle nur schnellere Vibrationen wahr, unser Fühlen wird gleichsam auf höhere Frequenzen „gestimmt“.

Die von Stefan Lechner und Matthias Heidenreich untersuchten tauben Patienten mit Mutationen in dem Kaliumkanal zeigten genau den gleichen Effekt. Sie konnten auch sehr langsame Vibrationen empfinden, die ihre gesunden Geschwister noch gar nicht wahrnehmen. Durch eine Mutation in dem Dämpfer ist das Fein-Tuning des Tastsinns verändert. Der Tastsinn ist ohnehin sehr unterschiedlich ausgeprägt – manche Menschen sind viel berührungsempfindlicher als andere. Die DFNA2 Patienten sind eine Art Super-Fühler in Sachen Vibration, meinen Lewin und Jentsch. „Die Haut hat mehrere unterschiedliche Typen von Mechanorezeptoren, die auf verschiedene Reizqualitäten ansprechen, insbesondere auch auf verschiedene Frequenzbereiche. Das Zusammenspiel verschiedener Rezeptorklassen ist für den Tastsinn wichtig. Obwohl die von uns untersuchten Rezeptoren durch Verlust des Kalium-Kanals insgesamt empfindlicher werden, überwiegt möglicherweise der Nachteil der falschen ‚Stimmung’ auf andere Frequenzen. Mit KCNQ4 haben wir zum ersten Mal ein menschliches Gen identifiziert, das die Eigenschaften des Tastsinns verändert.“

Die Arbeitsgruppe von Thomas Jentsch ist sowohl am FMP (Leibniz-Institut für Molekulare Pharmakologie) als auch am MDC (Max-Delbrück-Centrum für Molekulare Medizin) in Berlin angesiedelt und erforscht Ionentransport und dessen Rolle bei Krankheiten. Die Gruppe von Gary Lewin arbeitet am MDC und ist spezialisiert auf periphere Sinneswahrnehmung. Die Arbeit entstand in Zusammenarbeit mit Klinikern in Madrid (Spanien) und Nijmegen (Niederlande).

Paper:
KCNQ4 K+ channels tune mechanoreceptors for normal touch sensation in mouse and man. Matthias Heidenreich, Stefan G. Lechner, Vitya Vardanyan, Christiane Wetzel, Cor W. Cremers, Els M. de Leenheer, Gracia Aránguez, Miguel Ángel Moreno-Pelayo, Thomas J. Jentsch & Gary R. Lewin. Nature Neuroscience (advanced online publication http://dx.doi.org/10.1038/nn.2985)
Kontakt:
Prof. Thomas J. Jentsch
FMP (Leibniz-Institut für Molekulare Pharmakologie) und MDC (Max-Delbrück-Centrum für Molekulare Medizin)
Robert-Rössle-Straße 10, 13125 Berlin
Tel: 0049-30-9406-2961, e-mail: Jentsch@fmp-berlin.de
Internet: http://www.fmp-berlin.de/jentsch.html
und
Prof. Gary R. Lewin
Molecular Physiology of Somatic Sensation
Department of Neuroscience
MDC (Max-Delbrück-Centrum für Molekulare Medizin)
Robert-Rössle-Straße 10, 13125 Berlin
Tel: 0049-30-9406-2430, e-mail: glewin@mdc-berlin.de
Internet: http://www.mdc-berlin.de/en/research/research_teams/molecular_
physiology_of_somatic_sensation/index.html
Öffentlichkeitsarbeit:
Silke Oßwald
Leibniz-Institut für Molekulare Pharmakologie (FMP)
Tel: 0049-30-94793-104, e-mail: Osswald@fmp-berlin.de

Silke Oßwald | idw
Weitere Informationen:
http://www.fmp-berlin.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie