Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schweres Pyridin kristallisiert anders

08.01.2009
Deuteriertes Pyridin zeigt neue Kristallform - Effekt für Pharmaka nutzbar?

Der Kern gewöhnlicher Wasserstoffatome besteht nur aus einem Proton. Kommt zusätzlich ein Neutron dazu, spricht man von Deuterium. Moleküle, die Deuterium statt Wasserstoff enthalten, sind im Prinzip chemisch identisch. Dennoch kann es gravierende Unterschiede geben.

So ist etwa "schweres Wasser", also Wassermoleküle, die statt Wasserstoff Deuterium enthalten, giftig, denn es stört die hochempfindlichen biochemischen Prozesse im Körper und führt zum Stoffwechselversagen. Wie Forscher in der Zeitschrift Angewandte Chemie berichten, zeigt Pyridin, wenn seine Wasserstoffatome durch Deuterium ersetzt werden, eine zusätzlichen Kristallform, die bei "normalem" Pyridin bisher nur unter hohem Druck erhalten werden konnte.

Möglicherweise könnten die minimalen Unterschiede, die für derartige Effekte verantwortlich sind, auch für eine Verbesserung der Eigenschaftspalette pharmazeutischer Wirkstoffe herangezogen werden.

Pyridin ist ein Sechsring aus fünf Kohlenstoffatomen und einem Stickstoffatom. Die Kohlenstoffatome tragen je ein Wasserstoffatom. Diese können durch Deuterium ersetzt werden. Forscher um Roland Boese von der Universität Duisburg-Essen entdeckten, dass sich deuteriertes Pyridin bei etwa -85 °C in einer anderen Kristallstruktur gewinnen lässt als diejenige, in der Pyridin normalerweise auskristallisiert. Parallel stellten britische Forscher um Simon Parsons fest, dass nichtdeuteriertes Pyridin unter hohem Druck ebenfalls diese Kristallstruktur einnimmt, da sie ein geringeres Volumen aufweist als die gewöhnliche Struktur.

Durch den Wechsel von Wasserstoff zu Deuterium verändert sich offenbar die Stärke von Wechselwirkungen zwischen einzelnen Atomgruppierungen benachbarter Moleküle, so dass andere Konstellationen energetisch günstiger werden. Derartige Wechselwirkungen zwischen Atomgruppen spielen auch eine wichtige Rolle für Pharmaka, etwa wenn sich ein Wirkstoff in die Bindetasche eines Enzyms einlagern soll. Kleine Nuancen können hier deutliche Veränderungen in der Wirksamkeit verursachen. Das ist auch der Grund, warum sich Boese und sein Team so für das deuterierte Pyridin interessieren: Pyridin ist ein wichtiger Ausgangsstoff für Pharmaka und sein Grundgerüst ist in sehr vielen Medikamenten enthalten. Boese hält es für sehr wahrscheinlich, dass sich durch Deuterieren Wirkstoffvarianten entwickeln lassen, die spezifischer wirken oder weniger Nebenwirkungen haben als ihre konventionellen Vorbilder.

Angewandte Chemie: Presseinfo 52/2008

Autor: Roland Boese, Universität Duisburg-Essen (Germany),
http://www.structchem.uni-duisburg-essen.de/Dateien/Mitarbeiter/Boese/FR_Boese_en.htm

Angewandte Chemie 2009, 121, No. 4, 769-771, doi: 10.1002/ange.200803589

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | idw
Weitere Informationen:
http://presse.angewandte.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie