Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schneller sehen dank Vorwarnung vom Zell-Nachbarn

27.09.2010
RUB Wissenschaftler entwickeln Modell für lokale Aktivitätswellen im Gehirn

Computermodell: Neuronale Felder simulieren Gehirnaktivität

Fällt ein Lichtreiz auf die Netzhaut des Auges, werden innerhalb von wenigen Zehntel Millisekunden Millionen von Nervenzellen im Gehirn aktiviert. Jede Nervenzelle in der primären Sehrinde erhält dabei mehrere tausend Signale sowohl von benachbarten als auch von weit entfernten Zellen, und sendet ebenso viele Signale aus.

Während in den letzten Jahrzehnten die individuellen Eigenschaften und Verbindungen innerhalb dieses Netzwerkes charakterisiert und die Übertragungseigenschaften einzelner Nervenzellen abgeleitet wurden,

ließ sich das komplexe Zusammenwirken verschiedener Zellaktivitäten noch nicht beschreiben. Das ist jetzt RUB-Wissenschaftlern der Bernstein Gruppe für Computational Neuroscience gelungen. Sie entwickelten ein Computer-Modell, das auf weitreichenden Interaktionen zwischen Nervenzellen aufbaut. Es erklärt unter anderem, wie Nervenzellen von Nachbarn „vorgewarnt“ werden, so dass sie Reize schneller verarbeiten können. Die Forscher berichten in PLoS Computational Biology.

Aktivitätswellen im Gehirn

Ausgangspunkt für die Forschungen ist ein Phänomen, das die Wahrnehmungspsychologie „line-motion“-Illusion nennt, weil eine Schein-Bewegung wahrgenommen wird: Farbstoffe, die elektrische Spannungsänderungen von Nervenzellen in Leuchtsignale umsetzen, helfen zu zeigen, wie das Aufblitzen eines Lichtpunktes im Gesichtsfeld eine lokale Aktivierung im Gehirn auslöst, die sich rasch wellenförmig ausbreitet. Diese Aktivitätswellen sind zum größten Teil unterschwellig und daher nicht wahrnehmbar. Erscheint hingegen kurze Zeit später ein zweiter, balkenförmiger Lichtreiz, so wird die zuvor ausgelöste Aktivitätswelle nach und nach überschwellig. Die Folge: Die Versuchsperson sieht den Lichtbalken nicht augenblicklich in seiner realen Länge, sondern so als würde er sich ausgehend vom zuvor präsentierten Lichtpunkt ausdehnen. Die neuronale Grundlage für diese wahrgenommene Scheinbewegung könnten Prozesse im Gehirn sein, die fortschreitende Aktivitätswellen auslösen.

Neuronale Felder

RUB-Wissenschaftlern um Dr. Dirk Jancke vom Institut für Neuroinformatik gelang nun zum ersten Mal die Darstellung dieser komplexen Interaktionsdynamiken in einem Computer-Modell. Sie nutzten dazu ein neuronales Feld, in dem simulierte Nervenzellen durch die Reichweiten ihrer Wechselwirkungen beschrieben werden. In einem solchen Feld sind eng benachbarte Zellen durch starke, weiter entfernte durch schwache Kopplungen charakterisiert. Zwei Schichten dieser Nervenzellgruppen, eine erregende und eine hemmende Schicht, sind so verschaltet, dass ein lokaler Erregungseingang eine sich schnell ausbreitende und wieder abklingende Aktivierung erzeugt. „Das heißt, die gesamte Felddynamik wird sowohl durch direkte sensorische Eingänge, als auch durch weitreichende Wechselwirkungen zwischen den Nervenzellen bestimmt“, erklärt Dr. Jancke. „Die Folge ist, dass Eigenschaften eines externen Reizes nicht einfach passiv abgebildet werden, sondern Nachbarzellen einen entscheidenden Einfluss auf die sich ausbildenden Aktivitätsmuster haben.“ Im diesem Modell führen die weitreichenden Wechselwirkungen zwangsläufig zu einer Voraktivierung entfernter Nervenzellen.

Nervenzellen werden vorgewarnt

Solche Voraktivierungen könnten eine wichtige Rolle bei der Verarbeitung bewegter Objekte spielen. Denn durch neuronale Verarbeitungszeiten erfährt das Gehirn von Ereignissen in der Außenwelt stets mit Verzögerung. Dank der weitreichenden Interaktionen werden Nervenzellen gewissermaßen „vorgewarnt“, sind schneller aktivierbar, und können dadurch wertvolle Verarbeitungszeit einsparen.

Herausforderung: Mathematische Handhabbarkeit komplexer Reizkonstellationen

Was leistet ein solches Modell für das Verständnis von Gehirnprozessen? Neuronale Felder bieten eine mathematische Beschreibungsebene, die es erlaubt darzustellen, wie das Gehirn externe Ereignisse nicht nur abbildet, sondern durch Wechselwirkung zwischen Nervenzellen inter-„aktive“ Informationsverarbeitung betreibt und schließlich in bestimmten Grenzfällen das erzeugt, was wir Illusionen nennen. Die wichtige zukünftige Herausforderung ist der Einsatz solcher Feld-Modelle für komplexere visuelle Reizkonstellationen. Ein wesentlicher Vorteil des Konzepts könnte dabei sein, weitreichende Gehirnprozesse von der Aktivität einzelner Nervenzellen zu abstrahieren und so Funktionen des gesamten Netzwerkes mathematisch handhabbar zu machen.

Titelaufnahme

Markounikau V, Igel C, Grinvald A, Jancke D (2010). A Dynamic neural field model of mesoscopic cortical activity captured with voltage-sensitive dye Imaging. PLoS Comput Biol 6, e1000919. doi:10.1371/journal.pcbi.1000919.

http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000919

Weitere Informationen

Dr. Dirk Jancke, Bernstein Group for Computational Neuroscience, Institut für Neuroinformatik ND 03/70, Ruhr-Universität Bochum, 44780 Bochum, Germany, Tel: 0234/32 27845, E-Mail: jancke@neurobiologie.rub.de, http://homepage.ruhr-uni-bochum.de/Dirk.Jancke/

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/
http://homepage.ruhr-uni-bochum.de/Dirk.Jancke/
http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000919

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften