Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnell reagieren

15.08.2012
Wissenschaftler entdecken, wie es Neuronen gelingt, ultraschnell miteinander zu kommunizieren.

Neuronen in der Großhirnrinde arbeiten rasend schnell: Innerhalb einer Tausendstel Sekunde können sie winzige Änderungen des elektrischen Stroms erkennen, der sie von den umgebenden Nervenzellen erreicht, und darauf reagieren. Wissenschaftler unter Leitung des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) konnten nun erstmals klären, welche biophysikalischen Vorgänge diese blitzschnelle Reaktion ermöglichen.


Einen heranrasenden Ball kann ein Torwart innerhalb einiger hundert Millisekunden wahrnehmen – und mit etwas Glück entsprechend reagieren. Foto: MPIDS/Jan Vetter

Ihre Rechnungen zeigen, dass die Zusammenarbeit bestimmter Proteine, so genannter Ionenkanäle, in der Zellmembran das einzelne Neuron zum „Schnellsprecher“ macht. Vor Kurzem lieferten Forscher desselben Instituts zudem die erste experimentelle Bestätigung für eine ultraschnelle Signalübertragung im Gehirn. Sie konnten beweisen, dass das Miteinander bereits einiger tausend Neuronen das schnelle Wahrnehmen von Informationen ermöglicht. Beide Ergebnisse tragen nun maßgeblich dazu bei zu verstehen, wie es dem Gehirn gelingt, Informationen ultraschnell zu verarbeiten.

Komplexe optische Reize wie etwa eine Situation während eines Fußballspiels kann ein Mensch innerhalb einiger hundert Millisekunden wahrnehmen und einschätzen. Eine Meisterleistung! Denn um diese Aufgabe zu bewältigen, müssen Millionen von Neuronen aus völlig verschiedenen und weit entfernten Bereichen des Gehirns zusammenarbeiten. Jede Nervenzelle empfängt dabei die elektrischen Signale von etwa 10000 Nachbarn, wertet diese aus und leitet ein eigenes Signal weiter. „Jeder einzelne Schritt muss deshalb sehr, sehr schnell ablaufen“, erklärt Prof. Dr. Fred Wolf vom MPIDS. Wie die neuen Ergebnisse zeigen, ist zum Verständnis dieses Kunststücks ein doppelter Blick nötig: zum einen auf die dynamische Zusammenarbeit mehrerer Neuronen, zum anderen auf die molekularen Eigenschaften der einzelnen Zelle.

Die neue Studie liefert nun einen völlig neuen Blick auf die biophysikalischen Prozesse, welche die Funktionsweise des einzelnen Neurons bestimmen. Damit ein Neuron eine ankommende Information weiterleiten kann, muss es einen elektrischen Spannungsimpuls an seiner Zellmembran erzeugen. Doch wie gelingt es, den optimalen Zeitpunkt für diesen Spannungspuls so festzulegen? Den Schlüssel zu diesem Verhalten liefern bestimmte Proteine, so genannte Kanalproteine oder Ionenkanäle, welche den Transport elektrisch geladener Teilchen wie etwa Natriumionen durch die Zellmembran ermöglichen.

„Damit die Zelle den Zeitpunkt für eine Spannungspuls so genau wie möglich auswählen kann, müssen sich schlagartig sehr viele Ionenkanäle öffnen“, erklärt Wolf. „Bisher hatten Wissenschaftler angenommen, dass dies wegen eines mangelnden Zusammenspiels zwischen den Proteinen nur begrenzt möglich ist“, ergänzt er. Doch die neuen Ergebnisse zeigen, dass eine direkte Kopplung der Ionenkanäle diese Beschränkungen beseitigen kann.

In ihren Rechnungen ging das Forscherteam, zu dem auch Wissenschaftler des State Key Laboratory of Cognitive Neuroscience and Learning in Peking (China) und der University of Conneticut (USA) gehören, davon aus, dass die Ionenkanäle gekoppelt sind: Lässt ein Ionenkanal Ionen passieren, erhöht dies die Wahrscheinlichkeit, dass die Nachbarkanäle dasselbe tun. „Auf diese Weise ergibt sich eine Art Lawine, welche die Spannung an der Zellmembran blitzschnell ansteigen lässt“, erklärt Dr. Min Huang, Wissenschaftlerin am State Key Laboratory of Cognitive Neuroscience and Learning in Peking und Alumna der Göttinger Graduierten Schule GGNB. Dabei reicht es sogar aus, wenn nur 5 bis 15 Prozent der Ionenkanäle auf diese Weise zusammenarbeiten.

Neben dem einzelnen Neuron ist auch ihr Miteinander für die schnelle Signalübertragung ausschlaggebend. Bereits im vergangenen Jahr konnte das Forscherteam um Fred Wolf erstmals im Experiment beweisen, wie blitzschnell Gruppen von Neuronen reagieren können. Dafür werteten die Wissenschaftler Daten lebender Nervenzellen in der Sehrinde aus. Die Forscher versorgten die Nervenzellgruppen gezielt mit verschiedenen elektrischen Strömen und zeichneten dann die Antwort der Neuronen auf. „Ist ein Eingangssignal zu schnell, lässt sich dies leicht erkennen“, erklärt Dr. Tatjana Tchumatchenko vom MPIDS, die die Daten auswertete. In diesem Fall verändern die überforderten Nervenzellen ihr Ausgangssignal nicht. Eine Kommunikation hat nicht stattgefunden.

Insgesamt zeigte sich, dass die Neuronengruppen Signaländerungen innerhalb nur einer Tausendstel Sekunde wahrnehmen können. Zudem konnten die Wissenschaftler erstmals entschlüsseln, welchen Kommunikationsweg die Neuronen für ihr ultraschnelles Gespräch bevorzugen. „Das Signal, das die Neuronengruppe erfährt, besteht aus zwei Komponenten“, erklärt Tchumatchenko den Grundgedanken. Die vielen tausend elektrischen Einzelströme der Nachbarzellen nimmt die Gruppe als mittleren Strom wahr. Je nachdem, wie viele Zellen wie kommunizieren, fällt dieser stärker oder schwächer aus. Zusätzlich sind diesem Strom Fluktuationen überlagert.

„Bisher war unklar, welcher Teil des Signals für das blitzschnelle Reaktionsvermögen der Neuronen verantwortlich ist“, so Wolf. „Wir wussten sozusagen nicht, in welcher Sprache die Neuronen miteinander sprechen.“ Im Experiment ließ sich nun diese „Sprache“ zweifelsfrei identifizieren. Denn eine sprunghafte Veränderung des mittleren Stroms erwies sich als deutlich empfindlicherer - und somit verlässlicherer – Kommunikationsweg.

Zudem konnten die Wissenschaftler einen weiteren, entscheidenden Schlüssel zur ultraschnelle Kommunikation aufdecken: Teamwork. Bereits seit Jahren deuten theoretische Studien daraufhin, dass Neuronen in Gruppen schneller arbeiten als allein. Auch diese Vermutung ließ sich durch die Experimente der Gruppe bestätigen. Die Forscher variierten die Anzahl der Neuronen, die sie mit dem Eingangssignal ansprachen. Dabei zeigte sich, dass bereits einige tausend Nervenzellen gemeinsam die ultraschnelle Kommunikation bewältigen können. Kommen weitere Neuronen ins Spiel, wird der Informationsaustausch weder schneller noch verlässlicher.

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.ds.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Salmonellen als Medikament gegen Tumore
23.10.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Add-ons: Was Computerprogramme und Proteine gemeinsam haben
23.10.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie