Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnell reagieren

15.08.2012
Wissenschaftler entdecken, wie es Neuronen gelingt, ultraschnell miteinander zu kommunizieren.

Neuronen in der Großhirnrinde arbeiten rasend schnell: Innerhalb einer Tausendstel Sekunde können sie winzige Änderungen des elektrischen Stroms erkennen, der sie von den umgebenden Nervenzellen erreicht, und darauf reagieren. Wissenschaftler unter Leitung des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) konnten nun erstmals klären, welche biophysikalischen Vorgänge diese blitzschnelle Reaktion ermöglichen.


Einen heranrasenden Ball kann ein Torwart innerhalb einiger hundert Millisekunden wahrnehmen – und mit etwas Glück entsprechend reagieren. Foto: MPIDS/Jan Vetter

Ihre Rechnungen zeigen, dass die Zusammenarbeit bestimmter Proteine, so genannter Ionenkanäle, in der Zellmembran das einzelne Neuron zum „Schnellsprecher“ macht. Vor Kurzem lieferten Forscher desselben Instituts zudem die erste experimentelle Bestätigung für eine ultraschnelle Signalübertragung im Gehirn. Sie konnten beweisen, dass das Miteinander bereits einiger tausend Neuronen das schnelle Wahrnehmen von Informationen ermöglicht. Beide Ergebnisse tragen nun maßgeblich dazu bei zu verstehen, wie es dem Gehirn gelingt, Informationen ultraschnell zu verarbeiten.

Komplexe optische Reize wie etwa eine Situation während eines Fußballspiels kann ein Mensch innerhalb einiger hundert Millisekunden wahrnehmen und einschätzen. Eine Meisterleistung! Denn um diese Aufgabe zu bewältigen, müssen Millionen von Neuronen aus völlig verschiedenen und weit entfernten Bereichen des Gehirns zusammenarbeiten. Jede Nervenzelle empfängt dabei die elektrischen Signale von etwa 10000 Nachbarn, wertet diese aus und leitet ein eigenes Signal weiter. „Jeder einzelne Schritt muss deshalb sehr, sehr schnell ablaufen“, erklärt Prof. Dr. Fred Wolf vom MPIDS. Wie die neuen Ergebnisse zeigen, ist zum Verständnis dieses Kunststücks ein doppelter Blick nötig: zum einen auf die dynamische Zusammenarbeit mehrerer Neuronen, zum anderen auf die molekularen Eigenschaften der einzelnen Zelle.

Die neue Studie liefert nun einen völlig neuen Blick auf die biophysikalischen Prozesse, welche die Funktionsweise des einzelnen Neurons bestimmen. Damit ein Neuron eine ankommende Information weiterleiten kann, muss es einen elektrischen Spannungsimpuls an seiner Zellmembran erzeugen. Doch wie gelingt es, den optimalen Zeitpunkt für diesen Spannungspuls so festzulegen? Den Schlüssel zu diesem Verhalten liefern bestimmte Proteine, so genannte Kanalproteine oder Ionenkanäle, welche den Transport elektrisch geladener Teilchen wie etwa Natriumionen durch die Zellmembran ermöglichen.

„Damit die Zelle den Zeitpunkt für eine Spannungspuls so genau wie möglich auswählen kann, müssen sich schlagartig sehr viele Ionenkanäle öffnen“, erklärt Wolf. „Bisher hatten Wissenschaftler angenommen, dass dies wegen eines mangelnden Zusammenspiels zwischen den Proteinen nur begrenzt möglich ist“, ergänzt er. Doch die neuen Ergebnisse zeigen, dass eine direkte Kopplung der Ionenkanäle diese Beschränkungen beseitigen kann.

In ihren Rechnungen ging das Forscherteam, zu dem auch Wissenschaftler des State Key Laboratory of Cognitive Neuroscience and Learning in Peking (China) und der University of Conneticut (USA) gehören, davon aus, dass die Ionenkanäle gekoppelt sind: Lässt ein Ionenkanal Ionen passieren, erhöht dies die Wahrscheinlichkeit, dass die Nachbarkanäle dasselbe tun. „Auf diese Weise ergibt sich eine Art Lawine, welche die Spannung an der Zellmembran blitzschnell ansteigen lässt“, erklärt Dr. Min Huang, Wissenschaftlerin am State Key Laboratory of Cognitive Neuroscience and Learning in Peking und Alumna der Göttinger Graduierten Schule GGNB. Dabei reicht es sogar aus, wenn nur 5 bis 15 Prozent der Ionenkanäle auf diese Weise zusammenarbeiten.

Neben dem einzelnen Neuron ist auch ihr Miteinander für die schnelle Signalübertragung ausschlaggebend. Bereits im vergangenen Jahr konnte das Forscherteam um Fred Wolf erstmals im Experiment beweisen, wie blitzschnell Gruppen von Neuronen reagieren können. Dafür werteten die Wissenschaftler Daten lebender Nervenzellen in der Sehrinde aus. Die Forscher versorgten die Nervenzellgruppen gezielt mit verschiedenen elektrischen Strömen und zeichneten dann die Antwort der Neuronen auf. „Ist ein Eingangssignal zu schnell, lässt sich dies leicht erkennen“, erklärt Dr. Tatjana Tchumatchenko vom MPIDS, die die Daten auswertete. In diesem Fall verändern die überforderten Nervenzellen ihr Ausgangssignal nicht. Eine Kommunikation hat nicht stattgefunden.

Insgesamt zeigte sich, dass die Neuronengruppen Signaländerungen innerhalb nur einer Tausendstel Sekunde wahrnehmen können. Zudem konnten die Wissenschaftler erstmals entschlüsseln, welchen Kommunikationsweg die Neuronen für ihr ultraschnelles Gespräch bevorzugen. „Das Signal, das die Neuronengruppe erfährt, besteht aus zwei Komponenten“, erklärt Tchumatchenko den Grundgedanken. Die vielen tausend elektrischen Einzelströme der Nachbarzellen nimmt die Gruppe als mittleren Strom wahr. Je nachdem, wie viele Zellen wie kommunizieren, fällt dieser stärker oder schwächer aus. Zusätzlich sind diesem Strom Fluktuationen überlagert.

„Bisher war unklar, welcher Teil des Signals für das blitzschnelle Reaktionsvermögen der Neuronen verantwortlich ist“, so Wolf. „Wir wussten sozusagen nicht, in welcher Sprache die Neuronen miteinander sprechen.“ Im Experiment ließ sich nun diese „Sprache“ zweifelsfrei identifizieren. Denn eine sprunghafte Veränderung des mittleren Stroms erwies sich als deutlich empfindlicherer - und somit verlässlicherer – Kommunikationsweg.

Zudem konnten die Wissenschaftler einen weiteren, entscheidenden Schlüssel zur ultraschnelle Kommunikation aufdecken: Teamwork. Bereits seit Jahren deuten theoretische Studien daraufhin, dass Neuronen in Gruppen schneller arbeiten als allein. Auch diese Vermutung ließ sich durch die Experimente der Gruppe bestätigen. Die Forscher variierten die Anzahl der Neuronen, die sie mit dem Eingangssignal ansprachen. Dabei zeigte sich, dass bereits einige tausend Nervenzellen gemeinsam die ultraschnelle Kommunikation bewältigen können. Kommen weitere Neuronen ins Spiel, wird der Informationsaustausch weder schneller noch verlässlicher.

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.ds.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nose2Brain – Effizientere Therapie von Multipler Sklerose
26.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität
25.04.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal mit neuer Push-in-Leiteranschlussklemme - Kontakte im Handumdrehen

26.04.2017 | HANNOVER MESSE

Plastik – nicht nur Müll

26.04.2017 | Ökologie Umwelt- Naturschutz

Seminar zu Einblicken in die unterschiedlichen Ebenen des 3D-Druckens und wirtschaftlichen Nutzungsmöglichkeiten - 2017

26.04.2017 | Seminare Workshops