Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlafkrankheit: Über die Proteine des Parasiten

14.02.2012
Die Afrikanische Schlafkrankheit ist eine meist tödlich verlaufende Infektion, die von Tsetse-Fliegen übertragen wird.
Wie schafft es der Erreger, in so verschiedenen Wirtsorganismen wie Fliegen und Menschen zu überleben? Wie passt er sich an die jeweiligen Bedingungen an? Das erforscht Professor Christian Janzen (45). Seit 1. Oktober 2011 ist er als Professor für Molekulare Entwicklungsbiologie im Biozentrum der Uni Würzburg tätig.

Ausgelöst wird die Schlafkrankheit von dem einzelligen Parasiten Trypanosoma brucei. Durch den Stich einer Tsetse-Fliege gelangt er mit deren Speichel ins Blut des Menschen, wo er in eine andere Form übergeht und sich vermehrt. Saugt eine Tsetse-Fliege Blut von einem infizierten Menschen, nimmt sie die Erreger mit in ihren Darm auf. Dort verändern sich die Trypanosomen erneut, bevor sie in die Speicheldrüsen der Fliege wandern und damit den Kreislauf schließen.

Die Erreger müssen also mit den Bedingungen im Blut des Menschen sowie im Darm und in den Speicheldrüsen der Fliege zurechtkommen. Das schaffen sie unter anderem durch Veränderungen an ihrer Oberfläche. „Im Blut des Menschen müssen sie sich vor dem Immunsystem schützen. Dazu variieren sie ständig ihren Proteinmantel und machen sich dadurch immer wieder unsichtbar für die Immunabwehr“, erklärt Christian Janzen.

Vom Menschenblut in den Fliegendarm

Der neue Biologieprofessor erforscht hauptsächlich den Wandel, den die Trypanosomen beim Übergang vom Menschen in die Tsetse-Fliege durchmachen. „Wenn ein Erreger vom Blut in den Fliegendarm wechselt, kommt es innerhalb von nur 24 Stunden zu zahlreichen Anpassungen“, so Janzen. Die Struktur des Zellkerns ändere sich, der Energiestoffwechsel wird umgestellt, der variable Proteinmantel durch eine Hülle aus anderen Proteinen ersetzt.

Wodurch werden diese Veränderungen ausgelöst? Wie laufen sie ab? Wofür sind sie gut? Diese Fragen will Janzen mit seinem Team klären. Zum einen aus Interesse an grundlegenden Fragen der Entwicklung und Zelldifferenzierung, zum anderen aus der Überzeugung, dass sich bei dieser Forschung Anhaltspunkte für eine bessere Behandlung der Schlafkrankheit finden lassen. Denn die bislang verfügbaren Medikamente sind nicht gut genug und haben zum Teil schwere Nebenwirkungen.

Proteine des Erregers analysieren

Wenn die Trypanosomen sich beim Übergang vom Menschen in die Fliege so stark verändern: Welche Proteine lässt der Erreger dann verschwinden, welche produziert er neu? „Bei dieser Frage sind wir durch eine Kooperation mit dem Max-Planck-Institut für Biochemie in München gut vorangekommen“, freut sich Janzen.

Die Kooperation hat es möglich gemacht, Proteine sowohl von der Blutform als auch von der Insektenform des Erregers zu bestimmen und miteinander zu vergleichen. Dabei haben die Wissenschaftler Dutzende von Proteinen identifiziert, die nur bei einer der beiden Erregerformen auftauchen. „Jetzt untersuchen wir die Funktion dieser Proteine bei der Differenzierung der Trypanosomen.“ Welche Rolle das so genannte DOT1B-Protein dabei spielt, wissen die Forscher schon: „Wenn es fehlt, können sich die Trypanosomen nicht mehr in die Insektenform umwandeln und sterben ab“, sagt Janzen. Hier wäre also ein guter Ansatzpunkt, um den Entwicklungskreislauf des Erregers zu unterbrechen, etwa mit einem Hemmstoff gegen das Protein DOT1B.

Trypanosomen töten auch andere Säugetiere

Diese Forschungen treiben die Wissenschaftler mit Hilfe von Zellkulturen voran. Darin halten sie einen ungefährlichen Stamm von Trypanosoma brucei, der im Blut des Menschen nicht überleben kann. In der Natur wäre er aber für Rinder infektiös. Denn es gibt auch Trypanosomen, die Rinder, Ziegen, Schafe und andere Säugetiere infizieren und töten. Ein Grund mehr, diese Erreger zu erforschen: „In manchen Tsetse-Gebieten in Afrika ist keinerlei Viehhaltung möglich, weil die Tiere über kurz oder lang an Trypanosomen sterben“, sagt Janzen.

Lebenslauf von Christian Janzen

Christian Janzen wurde 1966 in Westerland auf Sylt geboren. „Technische Dinge und Biologie haben mich schon immer am meisten interessiert“, sagt er. So studierte er zuerst Maschinenbau an der Fachhochschule Aachen. Nach drei Semestern allerdings stellten sich Zweifel ein, ob nicht doch Biologie das bessere Fach wäre. Also nahm er 1990 an der Technischen Universität Aachen ein Biologiestudium auf und merkte: „Das ist es!“

Nach dem Diplomabschluss 1996 wechselte Janzen zur Promotion ans Institut für Hygiene und Mikrobiologie der Universität Freiburg. Als Postdoc ging er dann in die USA. Sechs Jahre lang forschte er in New York an der Rockefeller University im Labor von Professor George Cross, einem weltweit anerkannten Experten für Trypanosomen. Zurück in Deutschland, ging Janzen 2006 als Leiter einer unabhängigen Nachwuchsgruppe an die Universität München. Von dort folgte er 2011 dem Ruf ans Würzburger Biozentrum.

Kontakt

Prof. Dr. Christian Janzen, Lehrstuhl für Zoologie I (Zell- und Entwicklungsbiologie) am Biozentrum der Universität Würzburg,

T (0931) 31-86685, christian.janzen@uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Immunabwehr ohne Kollateralschaden
23.01.2017 | Universität Basel

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie