Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sauer macht Sandwich – Wie sich die Photosynthese dem Tageslicht anpasst

26.10.2010
Die Photosynthese ist der wichtigste Prozess für das Leben auf der Erde. Energie aus der Sonnenstrahlung wird dabei in Zucker und andere Nährstoffe umgewandelt und Kohlendioxid (CO2) verbraucht.

Ein Forscherteam um die LMU-Biologin Dr. Bettina Bölter und Professor Michael Groll von der TU München konnte nun zeigen, wie die Wechselwirkungen bestimmter Proteine den Pflanzen helfen, Photosynthese und CO2-Fixierung abhängig von der Lichtintensität zu koordinieren. „Damit können die Pflanzen flexibel auf helles Sonnenlicht, Schatten oder Dunkelheit reagieren“, sagt Bölter.

„Für sich genommen, führt dieses Ergebnis nicht zu einer Anwendung. Es ist aber ein weiterer Baustein im Verständnis der komplexen photosynthetischen Prozesse und könnte letztlich dazu beitragen, Kulturpflanzen mit höherer Photosyntheseleistung zu produzieren.“ Die Untersuchung entstand im Rahmen des Exzellenzclusters Center for Integrated Protein Science Munich und des SFB 594 Molecular Machines. (PNAS online, 25. Oktober 2010).

Die Photosynthese der Pflanzen findet in abgegrenzten zellulären Organellen statt, den Chloroplasten. Viele der Reaktionen in den Chloroplasten hängen von dem Koenzym NADPH ab, das als Reduktionsmittel für die CO2-Fixierung dient. NADPH wird in grünen Pflanzen im Rahmen der Photosynthese im Stroma der Chloroplasten gebildet, wobei dieser Prozess von dem Enzym FNR, kurz für Ferredoxin-NADP(H)-Oxidoreduktase, durchgeführt wird. „Weil NADPH so wichtig ist, ist FNR ein zentrales Enzym der Photosynthese“, sagt Privatdozentin Dr. Bettina Bölter vom Department Biologie I der LMU München.

In Zusammenarbeit mit Professor Michael Groll von der TU München konnten die Biologin und ihr Team nun zeigen, wie FNR mit einem weiteren Protein in Wechselwirkung tritt und so die Anpassung von Photosynthese-Aktivität und Biomassesynthese in Abhängigkeit von der Lichtintensität reguliert. Der Interaktionspartner ist das Protein Tic62, das am Import von Proteinen in die Chloroplasten beteiligt ist und, wie bereits bekannt war, das frei vorliegende Enzym FNR an der Thylakoidmembran der Chloroplasten verankern kann. „Wir konnten damit erstmals eine Verbindung zwischen zwei essenziellen Prozessen in den Pflanzenzellen strukturell charakterisieren: dem Transport von Proteinen in die Chloroplasten und der Photosynthese“, so Bölter.

Kristallografische Untersuchungen an der TU München zeigten zunächst, dass Tic62 zwei FNR-Enzyme so aneinander binden kann, dass sie gewissermaßen Rücken an Rücken liegen. Dabei bleiben jeweils die Vorderseiten für die enzymatische Reaktion frei. Sehr interessant ist dabei die Abhängigkeit der Bindungsstärke von der Lichtintensität. Bölter und ihre Mitarbeiter stellten fest, dass das FNR-Sandwich besonders stark gebunden ist, wenn der pH-Wert an den Thylakoiden niedrig ist, also ein saures Milieu vorherrscht. Das ist dann der Fall, wenn es dunkel ist. Die Umwandlung von Lichtenergie in chemische Energie lässt das Stroma dagegen alkalisch werden, was eine Herabsetzung der Bindungsstärke zur Folge hat.

„Wird bei wenig Sonnenlicht oder Dunkelheit kaum NADPH produziert, können die Pflanzen überschüssige FNR-Moleküle durch Bindung an die Thylakoidmembranen speichern“, erklärt Michael Groll. Auf diese Weise können sich die Pflanzen an verschiedene Lichtbedingungen anpassen. „Möglicherweise ist die Bindung von FNR an die Thylakoidmembranen also ein eleganter Weg, das Enzym zu speichern, wenn es nicht aktiv ist“, vermutet Bölter. Auch wenn keine unmittelbaren Anwendungen aus diesen Ergebnissen zu erwarten sind, tragen sie doch als ein Baustein zum besseren Verständnis der komplexen photosynthetischen Prozesse bei – was wiederum in Zukunft etwa zur Züchtung von Pflanzen mit höherer Photosyntheseleistung beitragen könnte.“ (LMU)

Publikation:
„Ferredoxin: NADP(H) Oxidoreductase is recruited to thylakoids by binding to a polyproline type II helix in a pH-dependent manner”;
Ferdinand Alte, Anna Stengel, J. Philipp Benz, Eike Petersen, Jürgen Soll, Michael Groll, & Bettina Bölter;

PNAS published ahead of print October 25, 2010, doi:10.1073/pnas.1009124107

Ansprechpartner:
PD Dr. Bettina Bölter
Ludwig-Maximilians-Universität (LMU) München
Department Biologie I
Tel.: 089 / 2180 - 74759
Fax: 089 / 2180 - 74752
E-Mail: boelter@bio.lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.botanik.biologie.uni-muenchen.de/professuren/soll/ags/boelter/index.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Geteiltes Denken ist doppeltes Denken
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht Neue CRISPR-Methode enthüllt Genregulation einzelner Zellen
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flashmob der Moleküle

19.01.2017 | Physik Astronomie

Tollwutviren zeigen Verschaltungen im gläsernen Gehirn

19.01.2017 | Medizin Gesundheit

Fraunhofer-Institute entwickeln zerstörungsfreie Qualitätsprüfung für Hybridgussbauteile

19.01.2017 | Verfahrenstechnologie