Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Salzige Überraschung - Forscher finden "verbotene" Verbindungen von gewöhnlichem Kochsalz

20.12.2013
Bei Hochdruck-Experimenten mit gewöhnlichem Kochsalz haben Forscher neue chemische Verbindungen hergestellt, die es Chemie-Lehrbüchern zufolge gar nicht geben dürfte.

Die Studie an DESYs Röntgenquelle PETRA III und anderen Forschungszentren könnte ein neues, universelleres Verständnis der Chemie sowie neuartige Anwendungen ermöglichen, wie die Forschergruppe unter Leitung von Prof. Artem Oganov von der Stony Brook University (State University of New York) und Prof. Alexander Goncharov von der Carnegie Institution in Washington im Fachjournal "Science" berichtet.


Die Elektronenlokalisation in der kubischen NaCl3-Struktur. Abbildung: Artem Oganov/Stony Brook University

Kochsalz, mit chemischem Namen Natriumchlorid (NaCl), ist eine der bekanntesten, meist untersuchten und stabilsten Verbindungen. Seine chemische Zusammensetzung ist denkbar einfach: Je ein Natriumatom (Na) und ein Chloratom (Cl) formen das kubische Salzgitter. Das gilt zumindest unter normalen Druck- und Temperaturbedingungen. Andere Verbindungen der beiden chemischen Elemente sind nach den Regeln der klassischen Chemie verboten.

So besagt etwa die Oktett-Regel, dass alle chemischen Elemente den Zustand der Edelgase anstreben. Diese besitzen jeweils acht Elektronen in ihrer äußeren Schale, die damit vollständig gefüllt ist; Chemiker nennen das abgeschlossen. Natrium hat gerade ein einzelnes Atom zu viel für eine abgeschlossene äußere Schale, Chlor fehlt dagegen genau eines. Tun sich beide zusammen, gibt das Natrium sein überzähliges Elektron an das Chlor ab, so dass beide Atome eine abgeschlossene äußere Schale mit jeweils acht Elektronen erreichen. So entsteht eine starke Ionenbindung.

Unter extremen Bedingungen sieht das jedoch anders aus, wie die Wissenschaftler beobachtet haben. Sie hatten Kochsalz unter 200.000fachem Atmosphärendruck und mehr komprimiert und erhitzt, wobei sie entweder eine Extraportion Natrium oder Chlor mit in die Probenkammer gaben. Mit dem hellen Röntgenlicht von PETRA III beobachteten sie das Ergebnis und stießen dabei auf "verbotene" Verbindungen wie Na3Cl und NaCl3.

"Anknüpfend an theoretische Vorhersagen haben wir die Proben unter Druck für eine Weile mit Lasern erhitzt", erläutert DESY-Forscherin und Koautorin Dr. Zuzana Konôpková, die die Experimente an DESYs Extreme Conditions Beamline P02 (ECB) unterstützt hat. "Wir haben überraschenderweise andere stabile Verbindungen von Natrium und Chlor gefunden." Das ist ungewöhnlich, denn diese Verbindungen erfordern ganz andere chemische Bindungen mit einer höheren Energie, wobei die Natur stets den Zustand geringster Energie bevorzugt.

Oganovs Team hatte zuvor bereits berechnet, dass sich unter extremen Bedingungen exotische Verbindungen bilden könnten, die dann unter diesen Bedingungen auch stabil bleiben. "Wir haben verrückte Verbindungen vorhergesagt und erzeugt, die gegen die Lehrbuchregeln verstoßen: NaCl3, NaCl7, Na3Cl2, Na2Cl, und Na3Cl,” sagt Hauptautorin Dr. Weiwei Zhang aus Oganovs Team. An PETRA III und im Labor der Carnegie Institution prüften die Wissenschaftler die Vorhersagen in sogenannten "Cook and Look"-Experimenten, wobei sie besonders die am leichtesten zu erzeugenden Verbindungen Na3Cl und NaCl3 ins Visier nahmen und diese tatsächlich nachweisen konnten.

"Diese Verbindungen sind thermodynamisch stabil und bleiben das auch, sobald sie einmal erzeugt wurden", betont Zhang. "Die klassische Chemie verbietet ihre Existenz. Die klassische Chemie sagt auch, dass Atome versuchen, die Oktett-Regel zu erfüllen - die Elemente nehmen oder geben Elektronen, um die Elektronenkonfiguration des nächsten Edelgases zu erreichen, mit einer voll besetzten äußeren Elektronenschale, was sie sehr stabil macht. Nun ja, hier ist diese Regel nicht erfüllt."

Die Experimente können den Blick der Chemie erweitern, betonen die Autoren. "Ich denke, diese Arbeit ist der Anfang einer Revolution in der Chemie", ist Oganov überzeugt. "Wir haben bereits bei vergleichsweise niedrigen Drücken, die sich im Labor erreichen lassen, vollkommen stabile Verbindungen gefunden, die den klassischen Regeln der Chemie widersprechen. Schon bei einem vergleichsweise mäßigen Druck von 200.000 Atmosphären - im Zentrum der Erde herrscht ein Druck von 3,6 Millionen Atmosphären - verliert viel von dem, was wir aus Chemie-Lehrbüchern wissen, seine Gültigkeit."

Ein Grund für die überraschende Entdeckung ist, dass die Lehrbuchchemie üblicherweise für die sogenannten Normalbedingungen gilt. "Hier auf der Erdoberfläche sind diese Bedingungen vielleicht normal", erläutert Konôpková. "Aber wenn man auf das Universum als Ganzes blickt, sind sie ziemlich speziell." Was "verboten" unter irdischen Normalbedingungen ist, kann unter extremen Bedingungen möglich werden. "'Unmöglich' bedeutet tatsächlich, dass die Energie hoch ist", sagt Oganov. "Die Regeln der Chemie sind nicht wie mathematische Theoreme, die nicht gebrochen werden können. Die Regeln der Chemie lassen sich brechen, denn 'unmöglich' ist eingeschränkt unmöglich. Man muss nur die Bedingungen finden, unter denen sich die Energiebilanz ändert, und dann gelten die Regeln nicht mehr."

Abgesehen von ihrer fundamentalen Bedeutung kann die Entdeckung auch zu neuen Anwendungen führen. "Wenn man das theoretische Fundament der Chemie verändert, ist das eine große Sache", betont Goncharov. "Was es aber auch bedeutet, ist, dass wir neue Materialien mit exotischen Eigenschaften herstellen können." Unter den Verbindungen, die die Gruppe um Oganov erzeugt hat, sind beispielsweise zweidimensionale Metalle, in denen Strom entlang der Strukturschichten fließt. "Eines dieser Materialien - Na3Cl - hat eine faszinierende Struktur", berichtet Oganov. "Es besteht aus NaCl-Schichten und Schichten reinen Natriums. Die NaCl-Schichten wirken als Isolatoren, die reinen Natriumschichten leiten den Strom. Systeme mit zweidimensionaler elektrischer Leitfähigkeit haben eine Menge Interesse geweckt."

Die Kochsalzexperimente sind möglicherweise erst der Anfang der Entdeckung völlig neuer Verbindungen. "Wenn dieses einfache System in der Lage ist, sich unter Hochdruck in so eine vielfältige Reihe von Verbindungen zu verwandeln, dann gilt das für andere wahrscheinlich auch", erwartet Goncharov. "Das könnte helfen, offene Fragen etwa zu jungen Planetenkernen zu beantworten, aber auch, neue Materialien von praktischem Nutzen zu erzeugen."

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.

Originalveröffentlichung
“Unexpected stable stoichometries of sodium chloride”; Weiwei Zhang, Artem R. Oganov, Alexander F. Goncharov, Qiang Zhu, Salah Eddine Boulfelfel, Andriy O. Lyakhov, Elissaios Stavrou, Maddury Somayazulu, Vitali B. Prakapenka, Zuzana Konôpková; Science, 2013; DOI: 10.1126/science.1244989

Dr. Thomas Zoufal | idw
Weitere Informationen:
http://www.desy.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bauchspeicheldrüsenkrebs: Forschungsgruppe erprobt erfolgreich neue Diagnose- und Therapieansätze
29.05.2017 | Wilhelm Sander-Stiftung

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

49. eucen-Konferenz zum Thema Lebenslanges Lernen an Universitäten

29.05.2017 | Veranstaltungen

Internationale Konferenz an der Schnittstelle von Literatur, Kultur und Wirtschaft

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Methode für die Datenübertragung mit Licht

29.05.2017 | Physik Astronomie

Deutschlandweit erstmalig: Selbstauflösender Bronchial-Stent für Säugling

29.05.2017 | Medizintechnik

Professionelle Mooszucht für den Klimaschutz – Projektstart in Greifswald

29.05.2017 | Ökologie Umwelt- Naturschutz