Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RUB-Forscher untersuchen wichtigen "Second Messenger"

07.10.2008
Erste Raumstruktur eines cGMP-bildenden Enzyms analysiert
Wie Botenstoffe entstehen
PNAS berichtet

Ursprung vieler Krankheiten wie Diabetes und Krebs sind Fehler in der Kommunikation innerhalb von und zwischen Zellen. Sie können u. a. bei der Benutzung der "second messenger" entstehen, kleiner Moleküle, die Zellen häufig als Botenstoff zur Signalweiterleitung in ihrem Inneren verwenden. Ein bekannter second messenger ist das zyklische Guanosinmonophosphat (cGMP), das beim Menschen etwa bei der Regulation des Blutdrucks und beim Sehvorgang eine zentrale Rolle spielt.

Seine Herstellung obliegt bestimmten Enzymen, den Guanylatzyklasen, die bislang ein Schattendasein fristeten: Da sie schwierig zu gewinnen sind, wusste man wenig über sie. Bochumer Forscher brachten sie jetzt erstmals ans Licht und analysierten ihre genaue Struktur. Sie berichten in der aktuellen Ausgabe der Proceedings of the National Academy of Sciences (PNAS).

GCs: Kleine, feine Unterschiede

Der Botenstoff cGMP wird von den Guanylatzyklasen (GCs), hergestellt, wenn diese durch ein anderes Signalmolekül angeregt werden, z.B. ein Hormon. Die Bereiche, die für die Herstellung von cGMP verantwortlich sind, sind bei allen bekannten GCs sehr ähnlich. Deutlich verschieden sind aber die Proteinbereiche, die für die Regulation dieser Synthese verantwortlich sind. So reagiert die sogenannte "lösliche GC", die ein Hauptregulator des Blutdrucks ist, auf Stickstoffmonoxid. Andere GCs, die die Zellmembran durchspannen, können verschiedene Signale außerhalb der Zelle erkennen, z.B. Peptidhormone. Wenn sie durch Bindung des Hormons angeregt werden, "übersetzen" sie dieses Signal in ein cGMP-Signal innerhalb der Zelle, wo es dann die benötigte Reaktion der Zelle bewirken kann.

Struktur und Funktion waren unbekannt

Genaue Einblicke in die Funktionsweise von GCs waren bisher nicht möglich, da es schwierig ist, sie in ausreichenden Mengen für biochemische und biophysikalische Experimente zu gewinnen. Insbesondere konnte bisher noch keine Struktur einer GC bestimmt werden. Das heißt, dass die genaue räumliche Anordnung der Atome des Proteins, die ein detailliertes Verständnis seiner Funktionsweise erst möglich macht, bisher unbekannt war. Der Arbeitsgruppe von Jun.-Prof Dr. Clemens Steegborn ist es nun erstmals gelungen, die Struktur einer GC zu bestimmen und grundlegende Mechanismen der cGMP-Bildung zu verstehen.

Überraschung: Auch Bakterien haben GCs

Ein wichtiger Schritt dazu war die Identifizierung der ersten GC aus einem Bakterium. "Bisher war man davon ausgegangen, dass Bakterien kein cGMP herstellen", erklärt Dr. Steegborn. "Wir konnten jetzt aber zeigen, dass das bakterielle Enzym Cya2 eine GC ist, und dass es ganze Familie von bakteriellen Genen gibt, die vermutlich für GCs kodieren." Anhand der dann untersuchten Raumstruktur von Cya2 konnten die Forscher einige Vorhersagen für die Funktionsweise der GC bestätigen, andere aber auch korrigieren: Von zwei Aminosäuren etwa, die für die Erkennung des Ausgangsstoffs (Substrats) GTP verantwortlich gemacht wurden, bildet nur eine die vermuteten "Wasserstoffbrücken" zum Substrat. Die zweite Aminosäure trägt dagegen dazu bei, dass die Form der Bindungstasche optimal zum Substrat passt. Sie sorgt damit dafür, dass GTP besser gebunden werden kann als andere Substanzen, die nicht umgesetzt werden sollen, insbesondere das GTP-verwandte ATP. Auch konnten die Forscher zeigen, dass diese optimale Bindung des Substrats erst erfolgt, wenn dessen Umsetzung bereits begonnen hat. Bei der anfänglichen Bindung wird noch nicht zwischen GTP und ATP unterschieden.

Türöffner für hochspezifische Wirkstoffe

Diese Einblicke in die Erkennung und Umsetzung von GTP durch GCs ermöglichen ein Verständnis grundlegender Aspekte dieser Signalenzyme und zeigen Gemeinsamkeiten und Unterschiede zu den verwandten Adenylylzyklasen auf. "Diese detaillierten Informationen zu Interaktionen und dynamischen Prozessen bei der Substraterkennung geben uns wichtige Hinweise für die Entwicklung neuer Wirkstoffe", sagt Steegborn. "Die Beeinflussung von GCs ist eine wichtige Behandlungsmöglichkeit von Herz-Kreislauf-Erkrankungen, und wird derzeit auch für andere Anwendungen untersucht, z.B. zur Behandlung von Entzündungen und zur Verhinderung der Metastasenbildung bei Krebserkrankungen." Aufgrund der Ähnlichkeit der verschiedenen GCs sowie der verwandten Adenylylzyklasen sind GC-Strukturen und mechanistische Information wertvoll, um Wirkstoffe zu entwickeln, die ganz gezielt eines dieser Enzyme beeinflussen. Die Arbeiten an Cya2 haben dafür Modellcharakter. "Viele Informationen lassen sich auf die menschlichen GCs übertragen, andere werden helfen, nun auch die Raumstruktur der menschlichen GCs zu bestimmen", so Steegborn.

Förderung durch die DFG

Die Arbeiten an GCs in der Forschergruppe um Clemens Steegborn werden von der Deutschen Forschungsgemeinschaft im Rahmen des Sonderforschungsbereich 642 "GTP- und ATP-abhängige Membranprozesse" gefördert.

Titelaufnahme

Annika Rauch, Martina Leipelt, Michael Russwurm, Clemens Steegborn: Crystal structure of the guanylyl cyclase Cya2. In: PNAS online early edition 6.-10.10.2008, doi: 10.1073_pnas.0808473105

Weitere Informationen

Juniorprofessor Dr. Clemens Steegborn,
Institut für Physiologische Chemie,
Medizinische Fakultät der Ruhr-Universität Bochum, 44780 Bochum,
Tel. 0234/32-27041, E-Mail: Clemens.Steegborn@rub.de

Dr. Josef König | idw
Weitere Informationen:
http://www.sfb642.rub.de/de/index.htm
http://www.ruhr-uni-bochum.de/physiolchem/steegborn/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Hemmung von microRNA-29 schützt vor Herzfibrosen
20.11.2017 | Technische Universität München

nachricht Satellitenbilder zur Erfassung von Biodiversität nur bedingt tauglich
20.11.2017 | Helmholtz-Zentrum für Umweltforschung - UFZ

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie