Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rolle des Reparatur-Enzyms RNase H2 entschlüsselt

12.06.2012
Wissenschaftlerinnen und Wissenschaftlern des Biochemischen Instituts der Christian-Albrechts-Universität zu Kiel (CAU) ist es in Zusammenarbeit mit Forschungsgruppen aus Edinburgh und Cambridge gelungen, die Rolle eines Reparatur-Enzyms, das bei der Vermehrung der DNA eine entscheidende Rolle spielt, zu entschlüsseln. Die Ergebnisse der Studie sind in der aktuellen Printausgabe der renommierten Fachzeitschrift Cell veröffentlicht.

Das Reparatur-Enzym RNase H2 entfernt aus der DNA, der Erbinformation der Zelle, RNA-Bausteine, die fälschlicherweise bei der Vervielfältigung der Erbinformation eingebaut wurden.

„Wir haben einen ganz neuartigen DNA-Reparaturmechanismus entdeckt“, sagt Professor Björn Rabe, Biochemisches Institut der CAU und Mitglied im Exzellenzcluster „Entzündung an Grenzflächen“. Bisher war die Funktion der RNase H2 unbekannt. Die Forscherinnen und Forscher haben ihre Studien mithilfe einer Maus bestätigt, bei der sie das Enzym ausgeschaltet haben, eine sogenannte Knockout-Maus. „Die Maus stirbt relativ früh in der Embryonalentwicklung. Das deutet darauf hin, dass die RNase H2 für den Organismus essentiell ist“, so Rabe.

Ausgang der Studien waren Untersuchungen einer kooperierenden Forschergruppe in Edinburgh, bei der der Kieler Wissenschaftler Rabe bis vor seinem Wechsel nach Kiel vor einem Jahr tätig war. Die Gruppe hat herausgefunden, dass bei Patientinnen und Patienten, die an einer erblichen Autoimmunerkrankung leiden, bei der die Entwicklung des Gehirns gestört ist (Aicardi-Goutières-Syndrom), das Gen für die RNase H2 mutiert ist. „Eigentlich hatten wir darauf spekuliert, dass die Knockout-Mäuse die Symptome der Krankheit zeigen“, sagt Rabe. Da das nicht der Fall war, habe man begonnen, die genaue Funktion der RNase H2 in Zellen der Maus zu untersuchen. So wurde entdeckt, dass das Enzym falsch eingebaute Moleküle aus der DNA schneidet und dass die Mäuse noch während der Embryonalentwicklung versterben, wenn dieser Reparaturmechanismus nicht funktioniert.

„In künftigen Studien wollen wir uns auf die Rolle der RNase H2 bei der Entwicklung des Aicardi-Goutières-Syndroms konzentrieren“, ergänzt Cluster-Professor Rabe. Die Mutationen bei den Patienten seien hypomorph. Das bedeutet, dass das Enzym nicht ganz ausgeschaltet ist, sondern in geringem Maße noch aktiv ist. In den Zellen des Gehirns sammeln sich infolgedessen diejenigen Moleküle an, die von der RNase H2 nicht vollständig abgebaut werden können. Es kommt so zu einer unangemessenen Immunreaktion und letzten Endes zu einer chronischen Entzündung des Gehirns. Um die Therapieaussichten von Betroffenen langfristig zu verbessern, sei es deshalb wichtig, die molekularen Vorgänge in der Zelle und die beteiligten Moleküle besser zu verstehen, erklärt Rabe. Die Forschungsergebnisse seien dazu ein wichtiger Schritt.

Originalpublikation:
Reijns MAM, Rabe B, Rigby RE, Mill P, Astell KR, Lettice LA, Boyle S, Leitch A, Keighren M, Kilanowski F, Devenney PS, Sexton D, Grimes G, Holt IJ, Hill RE, Taylor MS, Lawson KA, Dorin JR, and Jackson AP: Enzymatic Removal of Ribonucleotides from DNA Is Essential for Mammalian Genome Integrity and Development; Cell, Volume 149, Issue 5, 25 May 2012, Pages 1008-1022

Kontakt:
Prof. Björn Rabe
Telefon: 0431/880-1676
E-Mail: brabe@biochem.uni-kiel.de

Exzellenzcluster Entzündungsforschung
Presse und Kommunikation, Dr. Ann-Kathrin Wenke
Postanschrift: Christian-Albrechts-Platz 4, D-24118 Kiel
Telefon: (0431) 880-4839, Telefax: (0431) 880-4894
e-mail: akwenke@uv.uni-kiel.de, Internet: www.inflammation-at-interfaces.de

Dr. Ann-Kathrin Wenke | idw
Weitere Informationen:
http://www.inflammation-at-interfaces.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics