Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rolle des Reparatur-Enzyms RNase H2 entschlüsselt

12.06.2012
Wissenschaftlerinnen und Wissenschaftlern des Biochemischen Instituts der Christian-Albrechts-Universität zu Kiel (CAU) ist es in Zusammenarbeit mit Forschungsgruppen aus Edinburgh und Cambridge gelungen, die Rolle eines Reparatur-Enzyms, das bei der Vermehrung der DNA eine entscheidende Rolle spielt, zu entschlüsseln. Die Ergebnisse der Studie sind in der aktuellen Printausgabe der renommierten Fachzeitschrift Cell veröffentlicht.

Das Reparatur-Enzym RNase H2 entfernt aus der DNA, der Erbinformation der Zelle, RNA-Bausteine, die fälschlicherweise bei der Vervielfältigung der Erbinformation eingebaut wurden.

„Wir haben einen ganz neuartigen DNA-Reparaturmechanismus entdeckt“, sagt Professor Björn Rabe, Biochemisches Institut der CAU und Mitglied im Exzellenzcluster „Entzündung an Grenzflächen“. Bisher war die Funktion der RNase H2 unbekannt. Die Forscherinnen und Forscher haben ihre Studien mithilfe einer Maus bestätigt, bei der sie das Enzym ausgeschaltet haben, eine sogenannte Knockout-Maus. „Die Maus stirbt relativ früh in der Embryonalentwicklung. Das deutet darauf hin, dass die RNase H2 für den Organismus essentiell ist“, so Rabe.

Ausgang der Studien waren Untersuchungen einer kooperierenden Forschergruppe in Edinburgh, bei der der Kieler Wissenschaftler Rabe bis vor seinem Wechsel nach Kiel vor einem Jahr tätig war. Die Gruppe hat herausgefunden, dass bei Patientinnen und Patienten, die an einer erblichen Autoimmunerkrankung leiden, bei der die Entwicklung des Gehirns gestört ist (Aicardi-Goutières-Syndrom), das Gen für die RNase H2 mutiert ist. „Eigentlich hatten wir darauf spekuliert, dass die Knockout-Mäuse die Symptome der Krankheit zeigen“, sagt Rabe. Da das nicht der Fall war, habe man begonnen, die genaue Funktion der RNase H2 in Zellen der Maus zu untersuchen. So wurde entdeckt, dass das Enzym falsch eingebaute Moleküle aus der DNA schneidet und dass die Mäuse noch während der Embryonalentwicklung versterben, wenn dieser Reparaturmechanismus nicht funktioniert.

„In künftigen Studien wollen wir uns auf die Rolle der RNase H2 bei der Entwicklung des Aicardi-Goutières-Syndroms konzentrieren“, ergänzt Cluster-Professor Rabe. Die Mutationen bei den Patienten seien hypomorph. Das bedeutet, dass das Enzym nicht ganz ausgeschaltet ist, sondern in geringem Maße noch aktiv ist. In den Zellen des Gehirns sammeln sich infolgedessen diejenigen Moleküle an, die von der RNase H2 nicht vollständig abgebaut werden können. Es kommt so zu einer unangemessenen Immunreaktion und letzten Endes zu einer chronischen Entzündung des Gehirns. Um die Therapieaussichten von Betroffenen langfristig zu verbessern, sei es deshalb wichtig, die molekularen Vorgänge in der Zelle und die beteiligten Moleküle besser zu verstehen, erklärt Rabe. Die Forschungsergebnisse seien dazu ein wichtiger Schritt.

Originalpublikation:
Reijns MAM, Rabe B, Rigby RE, Mill P, Astell KR, Lettice LA, Boyle S, Leitch A, Keighren M, Kilanowski F, Devenney PS, Sexton D, Grimes G, Holt IJ, Hill RE, Taylor MS, Lawson KA, Dorin JR, and Jackson AP: Enzymatic Removal of Ribonucleotides from DNA Is Essential for Mammalian Genome Integrity and Development; Cell, Volume 149, Issue 5, 25 May 2012, Pages 1008-1022

Kontakt:
Prof. Björn Rabe
Telefon: 0431/880-1676
E-Mail: brabe@biochem.uni-kiel.de

Exzellenzcluster Entzündungsforschung
Presse und Kommunikation, Dr. Ann-Kathrin Wenke
Postanschrift: Christian-Albrechts-Platz 4, D-24118 Kiel
Telefon: (0431) 880-4839, Telefax: (0431) 880-4894
e-mail: akwenke@uv.uni-kiel.de, Internet: www.inflammation-at-interfaces.de

Dr. Ann-Kathrin Wenke | idw
Weitere Informationen:
http://www.inflammation-at-interfaces.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit den Augen der Biene: Zoologe der Uni Graz entwickelt Verfahren zur Verbesserung dunkler Bilder
11.12.2017 | Karl-Franzens-Universität Graz

nachricht Molekulare Chaperone als Helfer gegen Chorea-Huntington identifiziert
11.12.2017 | Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einmal durchleuchtet – dreifacher Informationsgewinn

11.12.2017 | Physik Astronomie

Kaskadennutzung auch bei Holz positiv

11.12.2017 | Agrar- Forstwissenschaften

Meilenstein in der Kreissägetechnologie

11.12.2017 | Energie und Elektrotechnik