Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röntgenanalyse enthüllt zentralen Schalter mit wichtiger Rolle bei Hautkrebs

03.12.2012
Mit dem Röntgenblick von DESYs Forschungslichtquelle DORIS haben Forscher aus Hamburg und Island die Struktur eines zentralen molekularen Schalters entschlüsselt, der eine wichtige Rolle bei der gefährlichsten Form von Hautkrebs spielt, dem Melanom.
Die Ergebnisse, die in der Dezemberausgabe des Fachjournals "Genes & Development" erscheinen, werfen ein neues Licht auf die Funktion des sogenannten Mikrophthalmie-assoziierten Transkriptionsfaktors MITF.

MITF wird nicht nur mit Hautkrebs in Verbindung gebracht, sondern auch mit verschiedenen Erbkrankheiten, bei denen die Produktion des Hautpigments Melanin gestört ist. Es spielt auch eine Rolle bei manchen Aspekten des Alterns. "Unsere Ergebnisse können eine rationale Grundlage für die Entwicklung maßgeschneiderter Wirkstoffe liefern, die an MITF angreifen", erläutert Erstautor Vivian Pogenberg von der Hamburger Auβenstelle des Europäischen Laboratoriums für Molekularbiologie EMBL.

Das Melanom (schwarzer Hautkrebs) ist ein bösartiger Tumor der pigmentproduzierenden Zellen. Diese sogenannten Melanozyten stellen das Hautpigment Melanin her. Das Melanom ist zwar nicht die häufigste Form von Hautkrebs, aber die mit der höchsten Todesrate: Rund drei von vier Hautkrebs-Todesfälle gehen auf Melanome zurück. Eine wichtige Rolle bei der Entwicklung von Melanomen spielen Fehlfunktionen im Mikrophthalmie-assoziierten Transkriptionsfaktor MITF. Allgemein steuern Transkriptionsfaktoren welche Teile des Erbguts in einer Zelle abgelesen und in Baupläne für Proteine umgesetzt werden. In einer einzelnen Zelle ist jeweils zu einer bestimmten Zeit nur ein kleiner Teil aller Gene aktiv.

Struktur des Mikrophthalmie-assoziierten Transkriptionsfaktors MITF. Deutlich erkennbar ist der neu entdeckte Knick. Strukturelle Veränderungen durch Mutationen bei Menschen (Tietz- oder Waardenburg-Syndrom) sind rot markiert, solche bei der Maus in Orange.

Bild: Vivian Pogenberg, EMBL Hamburg


Mikroskopaufnahme der untersuchten MITF-Kristalle.

Bild: Vivian Pogenberg/EMBL Hamburg

MITF aktiviert beispielsweise die zelleigene Maschinerie, um aus der Aminosäure Tyrosin das Pigment Melanin zu produzieren. Aber der Transkriptionsfaktor sorgt auch dafür, dass aus Stammzellen überhaupt erst Melanozyten werden. Er spielt eine wichtige Rolle bei der Vermehrung und beim Tod von Pigmentzellen. Aus diesem Grund wird MITF auch als Hauptschalter bezeichnet. Zusätzlich hat er Aufgaben in anderen Zelltypen wie den Mastzellen des Immunsystems oder den "Knochenfressern", den Osteoklasten.

MITF-Mutationen spielen nicht nur eine Rolle bei der Entstehung von Hautkrebs, sondern führen auch zu schweren Erbkrankheiten wie dem Tietz- oder dem Waardenburg-Syndrom, die mit Taubheit, Haut- und Haarpigmentierungsstörungen, Augenfehlbildungen und Sehstörungen einhergehen. Der Transkriptionsfaktor ist auch an altersbedingten Pigmentierungsstörungen wie dem Ergrauen der Haare beteiligt.

Die Forscher um Pogenberg und EMBL-Gruppenleiter Matthias Wilmanns ließen im Labor kleine Proteinkristalle aus MITF wachsen und durchleuchteten diese mit dem Röntgenlicht von DORIS. Dabei entsteht kein klassisches Röntgenbild, sondern die Kristalle streuen die Röntgenstrahlung auf charakteristische Weise. Aus dem Streubild lässt sich mathematisch die Struktur des Kristalls rekonstruieren und damit die Struktur von MITF. Die Analyse enthüllte ungewöhnliche Veränderungen in dem Molekül, die ihm einen charakteristischen Knick verleihen. MITF bildet ein Doppelmolekül (Dimer) mit langen Spiralen, die wie ein Reißverschluss ineinandergreifen. Der charakteristische Knick in diesem Reißverschluss führt dazu, dass MITF sich kaum an andere Transkriptionsfaktoren binden kann.

Die Forscher konnten auch Strukturänderungen in dem Molekül identifizieren, die auf eine Reihe von bekannten MITF-Mutationen zurückgehen, die etwa zu bestimmten Fellfarben bei Mäusen und zu Tietz- oder Waardenburg-Syndrom beim Menschen führen. Die verschiedenen MITF-Formen steuerte das Labor von Ko-Autor Eiríkur Steingrímsson an der Universität von Island bei, das eine große Bibliothek verschiedener MITF-Mutationen besitzt. Steingrímsson war auch maßgeblich an der Interpretation der Daten beteiligt.

Mit den MITF-Strukturinformationen von DORIS konnten die Wissenschaftler an der Europäischen Synchrotronstrahlungsquelle ESRF im französischen Grenoble die Verbindung zwischen MITF und der DNA untersuchen. Die Analyse zeigte unter anderem Strukturänderungen durch die namensgebende Mutation, die zu weißem Fell und unnatürlich kleinen Augen (Mikrophthalmie) bei Mäusen führt. Es zeigte sich, dass diese Strukturänderungen die Bindungsstelle zwischen MITF und der DNA beeinflussen, wodurch der Transkriptionsfaktor schlechter an die DNA andockt. Andere Mutationen führen wiederum dazu, dass MITF an zu viele Gene binden kann und so an falschen Stellen andockt.
"Das Fernziel ist, die MITF-Funktionsweise komplett zu verstehen, um zu beurteilen, wie es sich für mögliche Therapien eignet", betont Wilmanns. "Ein möglicher Weg könnte beispielsweise sein, mit maßgeschneiderten Molekülen gezielt die Dimerisierung von MITF in Melanozyten zu stoppen", erläutert Pogenberg. "Alternativ könnte ein anderes passgenaues Molekül den Transkriptionsfaktor daran hindern, die Bindestelle im Erbgut zu erkennen."

Originalveröffentlichung
Restricted leucine zipper dimerization and specificity of DNA recognition of the melanocyte master regulator MITF; Vivian Pogenberg et al.; "Genes & Development", 2012; DOI: 10.1101/gad.198192.112

Dr. Thomas Zoufal | idw
Weitere Informationen:
http://www.desy.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie