Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röntgenanalyse enthüllt zentralen Schalter mit wichtiger Rolle bei Hautkrebs

03.12.2012
Mit dem Röntgenblick von DESYs Forschungslichtquelle DORIS haben Forscher aus Hamburg und Island die Struktur eines zentralen molekularen Schalters entschlüsselt, der eine wichtige Rolle bei der gefährlichsten Form von Hautkrebs spielt, dem Melanom.
Die Ergebnisse, die in der Dezemberausgabe des Fachjournals "Genes & Development" erscheinen, werfen ein neues Licht auf die Funktion des sogenannten Mikrophthalmie-assoziierten Transkriptionsfaktors MITF.

MITF wird nicht nur mit Hautkrebs in Verbindung gebracht, sondern auch mit verschiedenen Erbkrankheiten, bei denen die Produktion des Hautpigments Melanin gestört ist. Es spielt auch eine Rolle bei manchen Aspekten des Alterns. "Unsere Ergebnisse können eine rationale Grundlage für die Entwicklung maßgeschneiderter Wirkstoffe liefern, die an MITF angreifen", erläutert Erstautor Vivian Pogenberg von der Hamburger Auβenstelle des Europäischen Laboratoriums für Molekularbiologie EMBL.

Das Melanom (schwarzer Hautkrebs) ist ein bösartiger Tumor der pigmentproduzierenden Zellen. Diese sogenannten Melanozyten stellen das Hautpigment Melanin her. Das Melanom ist zwar nicht die häufigste Form von Hautkrebs, aber die mit der höchsten Todesrate: Rund drei von vier Hautkrebs-Todesfälle gehen auf Melanome zurück. Eine wichtige Rolle bei der Entwicklung von Melanomen spielen Fehlfunktionen im Mikrophthalmie-assoziierten Transkriptionsfaktor MITF. Allgemein steuern Transkriptionsfaktoren welche Teile des Erbguts in einer Zelle abgelesen und in Baupläne für Proteine umgesetzt werden. In einer einzelnen Zelle ist jeweils zu einer bestimmten Zeit nur ein kleiner Teil aller Gene aktiv.

Struktur des Mikrophthalmie-assoziierten Transkriptionsfaktors MITF. Deutlich erkennbar ist der neu entdeckte Knick. Strukturelle Veränderungen durch Mutationen bei Menschen (Tietz- oder Waardenburg-Syndrom) sind rot markiert, solche bei der Maus in Orange.

Bild: Vivian Pogenberg, EMBL Hamburg


Mikroskopaufnahme der untersuchten MITF-Kristalle.

Bild: Vivian Pogenberg/EMBL Hamburg

MITF aktiviert beispielsweise die zelleigene Maschinerie, um aus der Aminosäure Tyrosin das Pigment Melanin zu produzieren. Aber der Transkriptionsfaktor sorgt auch dafür, dass aus Stammzellen überhaupt erst Melanozyten werden. Er spielt eine wichtige Rolle bei der Vermehrung und beim Tod von Pigmentzellen. Aus diesem Grund wird MITF auch als Hauptschalter bezeichnet. Zusätzlich hat er Aufgaben in anderen Zelltypen wie den Mastzellen des Immunsystems oder den "Knochenfressern", den Osteoklasten.

MITF-Mutationen spielen nicht nur eine Rolle bei der Entstehung von Hautkrebs, sondern führen auch zu schweren Erbkrankheiten wie dem Tietz- oder dem Waardenburg-Syndrom, die mit Taubheit, Haut- und Haarpigmentierungsstörungen, Augenfehlbildungen und Sehstörungen einhergehen. Der Transkriptionsfaktor ist auch an altersbedingten Pigmentierungsstörungen wie dem Ergrauen der Haare beteiligt.

Die Forscher um Pogenberg und EMBL-Gruppenleiter Matthias Wilmanns ließen im Labor kleine Proteinkristalle aus MITF wachsen und durchleuchteten diese mit dem Röntgenlicht von DORIS. Dabei entsteht kein klassisches Röntgenbild, sondern die Kristalle streuen die Röntgenstrahlung auf charakteristische Weise. Aus dem Streubild lässt sich mathematisch die Struktur des Kristalls rekonstruieren und damit die Struktur von MITF. Die Analyse enthüllte ungewöhnliche Veränderungen in dem Molekül, die ihm einen charakteristischen Knick verleihen. MITF bildet ein Doppelmolekül (Dimer) mit langen Spiralen, die wie ein Reißverschluss ineinandergreifen. Der charakteristische Knick in diesem Reißverschluss führt dazu, dass MITF sich kaum an andere Transkriptionsfaktoren binden kann.

Die Forscher konnten auch Strukturänderungen in dem Molekül identifizieren, die auf eine Reihe von bekannten MITF-Mutationen zurückgehen, die etwa zu bestimmten Fellfarben bei Mäusen und zu Tietz- oder Waardenburg-Syndrom beim Menschen führen. Die verschiedenen MITF-Formen steuerte das Labor von Ko-Autor Eiríkur Steingrímsson an der Universität von Island bei, das eine große Bibliothek verschiedener MITF-Mutationen besitzt. Steingrímsson war auch maßgeblich an der Interpretation der Daten beteiligt.

Mit den MITF-Strukturinformationen von DORIS konnten die Wissenschaftler an der Europäischen Synchrotronstrahlungsquelle ESRF im französischen Grenoble die Verbindung zwischen MITF und der DNA untersuchen. Die Analyse zeigte unter anderem Strukturänderungen durch die namensgebende Mutation, die zu weißem Fell und unnatürlich kleinen Augen (Mikrophthalmie) bei Mäusen führt. Es zeigte sich, dass diese Strukturänderungen die Bindungsstelle zwischen MITF und der DNA beeinflussen, wodurch der Transkriptionsfaktor schlechter an die DNA andockt. Andere Mutationen führen wiederum dazu, dass MITF an zu viele Gene binden kann und so an falschen Stellen andockt.
"Das Fernziel ist, die MITF-Funktionsweise komplett zu verstehen, um zu beurteilen, wie es sich für mögliche Therapien eignet", betont Wilmanns. "Ein möglicher Weg könnte beispielsweise sein, mit maßgeschneiderten Molekülen gezielt die Dimerisierung von MITF in Melanozyten zu stoppen", erläutert Pogenberg. "Alternativ könnte ein anderes passgenaues Molekül den Transkriptionsfaktor daran hindern, die Bindestelle im Erbgut zu erkennen."

Originalveröffentlichung
Restricted leucine zipper dimerization and specificity of DNA recognition of the melanocyte master regulator MITF; Vivian Pogenberg et al.; "Genes & Development", 2012; DOI: 10.1101/gad.198192.112

Dr. Thomas Zoufal | idw
Weitere Informationen:
http://www.desy.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Warum der Brennstoffzelle die Luft wegbleibt
28.03.2017 | Technische Universität Wien

nachricht Chlamydien: Wie Bakterien das Ruder übernehmen
28.03.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Warum der Brennstoffzelle die Luft wegbleibt

28.03.2017 | Biowissenschaften Chemie

Chlamydien: Wie Bakterien das Ruder übernehmen

28.03.2017 | Biowissenschaften Chemie

Sterngeburt in den Winden supermassereicher Schwarzer Löcher

28.03.2017 | Physik Astronomie