Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Riesenfresszellen steuern die Entwicklung von Nerven und Blutgefäßen im Gehirn

30.05.2017

Nervenzellen und Blutgefäße haben erstaunliche Gemeinsamkeiten in ihrer Entwicklung. Wissenschaftler des Deutschen Krebsforschungszentrums zeigten, dass Riesenfresszellen (Makrophagen) das Wachstum und die Verzweigung sowohl von Nerven als auch von Blutgefäßen im Gehirn steuern. Eine Schlüsselrolle spielt dabei das Molekül CD95L.

Wenn sich in einem Embryo das Zentralnervensystem (ZNS) entwickelt, entstehen nicht nur Nervenzellen und die Stützzellen des Nervensystems, sondern auch Blutgefäße. Diese versorgen das sich entwickelnde Gehirn mit Sauerstoff und Nährstoffen. Sowohl das Nerven- als auch das Blutgefäßsystem bilden verzweigte Netzwerke. Auch Riesenfresszellen (Makrophagen), die Immunzellen des ZNS, wandern in das sich entwickelnde Gehirn des Embryos ein.


Während der frühen Entwicklung des Gehirns nach der Geburt sind Makrophagen (grün) in unmittelbarer Nähe der Blutgefäße (rot)zu sehen.

© DKFZ

Si Chen vom Team um Ana Martin-Villalba, Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, zeigte nun, dass diese Immunzellen eine wichtige Rolle bei der Gehirnentwicklung spielen: „Wir haben in unserer aktuellen Arbeit gezeigt, dass das Immunsystem während der ZNS-Entwicklung mit dem Gefäß- und Nervensystem interagiert“, sagt die Wissenschaftlerin. Die ZNS-Makrophagen bilden das Signalmolekül CD95L, mit dem sie das gemeinsame Wachstum von Nervenzellen und Blutgefäßen steuern.

CD95L ist der Bindungspartner für den CD95-Rezeptor. Dieser Rezeptor wurde ursprünglich auf Lymphozyten entdeckt – dort löst er den programmierten Zelltod (Apoptose) aus, wenn er an seinen Bindungspartner, also CD95L, angedockt hat.

Die Forschergruppe von Martin-Villalba hat in den vergangenen Jahren bereits zahlreiche weitere Funktionen von CD95 entdeckt. Die Forscher haben den Rezeptor auf vielen Zelltypen gefunden, z.B. auf Nerven-, Immun- und Tumorzellen. So spielt CD95 beispielsweise eine Rolle bei der Ausbreitung mancher Tumoren oder bei Entzündungen, erklärt Martin-Villalba.

Ihre neuen Ergebnisse zeigen nun, dass verschiedene Zelltypen im sich entwickelnden Gehirn CD95 bilden – und zwar in immer größerer Zahl im Lauf der Entwicklung. CD95L wird dagegen vor allem von Makrophagen gebildet: „Wir haben ZNS-Makrophagen als die Hauptquelle von CD95L identifiziert“, sagt Ana Martin-Villalba.

„Durch die verzweigte Zellform der Makrophagen kommen sie in engen Kontakt mit den Blutgefäßen und Nervenfortsätzen. Daher spielen wahrscheinlich Zell-Zell-Wechselwirkungen eine wichtige Rolle – CD95L auf der Zelloberfläche der Makrophagen bindet an den CD95-Rezeptoren auf Nerven und Blutgefäßen.“ So steuern die ZNS-Makrophagen die koordinierte Entwicklung beider Systeme (Nerven und Blutgefäße) – „über das gleiche Molekül, nämlich CD95L, gemeinsam und gleichzeitig“, ergänzt die Wissenschaftlerin.

Das von Makrophagen gebildete CD95L aktiviert seinen passenden Rezeptor CD95 auf Blutgefäßen: Diese wachsen und verzweigen sich. Ebenso wird der Rezeptor CD95 auf Neuronen aktiviert: Die Nervenzellen verzweigen sich in der sich entwickelnden Hirnrinde und der Netzhaut des Auges.

In weiteren Versuchen untersuchte das Forscherteam von Martin-Villalba die Folgen, wenn zu wenig CD95-Rezeptoren bzw. zu wenig CD95-Liganden vorhanden sind: Dadurch wachsen die Blutgefäße und die Nervenzellen weniger, sie verzweigen sich weniger und die synaptische Aktivität der Neuronen ist geringer. „Es gibt Hinweise darauf, dass ein Fehlen von CD95 Verhaltensänderungen zur Folge haben kann. Mäuse, die wenig CD95-bilden, haben eine Reihe von Verhaltens- und kognitiven Defizite, sie sind z.B. ängstlicher und zeigen weniger spontane Aktivität“, erklärt Martin-Villalba. „Unsere Forschungsergebnisse unterstreichen die Bedeutung von Makrophagen für Entstehung des neurovaskulären Netzwerks während der Gehirnentwicklung.“

Auch in einen Tumor wandern viele Makrophagen ein. „Möglicherweise regen Makrophagen auch hier via CD95L Tumorzellen und Blutgefäße gemeinsam zum Wachstum an“, vermutet Martin-Villalba. „Das Signalmolekül könnte durch einen spezifischen Antikörper blockiert werden – und so das weitere Wachstum des Tumors und der Blutgefäße verhindern“, wagt Martin-Villalba einen Ausblick. Erste klinische Versuche mit einer Blockade der CD95-Aktivität als Zweittherapie bei Patienten mit Hirntumoren (Glioblastomen) seien vielversprechend verlaufen.

Si Chen, Nathalie Tisch, Marcel Kegel, Rosario Yerbes, Robert Hermann, Hannes Hudalla, Cecilia Zuliani, Gülce Sila Gülcüler, Klara Zwadlo, Jakob von Engelhardt, Carmen Ruiz de Almodóvar, Ana Martin-Villalba: Central nervous system macrophages control neurovascular development via CD95L. Cell Reports 2017, DOI: 10.1016/j.celrep.2017.04.056

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) klären Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Gemeinsam mit dem Universitätsklinikum Heidelberg hat das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg eingerichtet, in dem vielversprechende Ansätze aus der Krebsforschung in die Klinik übertragen werden. Im Deutschen Konsortium für Translationale Krebsforschung (DKTK), einem der sechs Deutschen Zentren für Gesundheitsforschung, unterhält das DKFZ Translationszentren an sieben universitären Partnerstandorten. Die Verbindung von exzellenter Hochschulmedizin mit der hochkarätigen Forschung eines Helmholtz-Zentrums ist ein wichtiger Beitrag, um die Chancen von Krebspatienten zu verbessern. Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Dr. Sibylle Kohlstädt | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.dkfz.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie