Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ressourceneffiziente Katalysatoren aus bakterieller Nanocellulose

21.10.2015

Augsburger Forscher berichten im Journal of Materials Chemistry über ein neues „Eintopfverfahren“ zur Abscheidung von Ruthenium auf hochreinen Cellulosefilzen

Wissenschaftler des Lehrstuhls für Festkörperchemie der Universität Augsburg berichten im britischen Journal of Materials Chemistry erstmals von einem energie- und ressourceneffizienten Verfahren zur Abscheidung edelmetallhaltiger Nanopartikel auf einem filzartigen Träger aus carbonisierter bakterieller Nanocellulose. Der so gewonnene Katalysator unterstützt die Methanbildung aus Kohlenmonoxid und Wasserstoffgas unter milden Reaktionsbedingungen.


Biotechnologisch produzierte bakterielle Nanocellulose. Auf der REM-Aufnahme deutlich erkennbar: längliche bakterielle Zellen, aus denen schmale Nanofasern chemisch reinster Cellulose herauswachsen.

© D. Volkmer


Transmissionselektronenmikroskopische Aufnahme carbonisierter Nanocellulose; die punktförmigen dunklen Stellen werden durch nano-skalige Cluster aus Rutheniumatomen hervorgerufen.

© D. Volkmer

Hochreine Cellulosefasern mit Durchmessern im Bereich von wenigen 10 Nanometern werden von verschiedenen fermentierenden Bakterienstämmen aus Rohr- oder Fruchtzucker produziert. Diese natürlich vorkommenden Bakterien bilden auf ihrer Zelloberfläche Mikrofibrillen aus Cellulose, die die Länge ihres Zellkörpers um ein Vielfaches übersteigen und miteinander zu einem dreidimensionalen Geflecht verfilzen (Abb.1).

In indonesischen Ländern wird ein derartiger Fermentierungsprozess seit langer Zeit zur Herstellung der populären Süßspeise „Nata de coco“ verwendet, eines gelatineartigen aromatisierten Nahrungs- und Genussmittels. Alternativ lässt sich hochreine mikrokristalline Cellulose auch aus Pflanzen gewinnen, allerdings ist diese Form der Erzeugung an energie- und kostenintensive Aufarbeitungs- und Reinigungsschritte gebunden.

Ein Wissenschaftlerteam am Augsburger Lehrstuhl für Festkörperchemie (Prof. Dr. Dirk Volkmer) ist in einer jüngsten Studie nun der Frage nachgegangen, ob sich Filze aus bakterieller Nanocellulose prinzipiell auch als Träger für Edelmetallkatalysatoren eignen. Über die Ergebnisse berichtet das Team jetzt in der renommierten englischen Fachzeitschrift Journal of Materials Chemistry A.

Die Wissenschaftler untersuchten zunächst, ob sich Filze aus bakterieller Nanocellulose bei hohen Temperaturen – unter Erhalt des natürlichen 3D-Geflechts – in einen Träger aus nanostrukturiertem Kohlenstoff umwandeln lassen. Der Graphit-Nanofilz, den sie bei 800 °C erhielten, ist hochporös: Ein Gramm des Materials hat eine innere Oberfläche von ca. 600 Quadratmetern. Dies entspricht etwa der Fläche von drei Tennisplätzen – gefaltet auf die Größe einer Erbse!

Solche hochporösen, in ihrer Form stabilen Filze eignen sich hervorragend als Träger für katalytisch aktive Nanopartikeln. Die Augsburger Forscher setzten hier auf das Element Ruthenium, da dieser „schwere Verwandte“ von Eisen in verschiedensten technischen Prozessen eine hohe katalytische Aktivität aufweist.

„Der eigentliche Clou ist die Abscheidung der Ruthenium-Nanopartikeln auf dem Cellulosefilz im Eintopfverfahren“ berichtet der Chemie-Ingenieur Andreas Kalytta-Mewes. „Im Verlauf der Untersuchungen haben wir nämlich herausgefunden, dass der bakterielle Filz lediglich mit einer Lösung getränkt werden muss, die einen einfachen Rutheniumkomplex enthält. Der Rest erledigt sich dann – fast – von selbst, sprich: durch kurzzeitiges Erhitzen des Filzes auf 1250 °C erhält man ein Carbonfaser-Netzwerk, das die Katalysator-Nanoteilchen in fein verteilter Form enthält.“

Diese Verteilung, der Dispersionsgrad der Edelmetallpartikeln auf dem Träger also, ist ein entscheidender Faktor für deren katalytische Aktivität. Hochaktive Katalysatoren benötigen in der Regel extrem kleine Nanopartikeln, die nur aus wenigen 10 bis 100 Metallatomen bestehen und die unter technischen Reaktionsbedingungen nicht miteinander sintern, weil sie dadurch ihre Aktivität einbüßen würden.

Bei ersten Tests gelang mit den im Eintopfverfahren erzeugten Katalysatoren (s. Abb. 2) eine direkte Umwandlung von Kohlenmonoxid und Wasserstoff zu Methangas unter sehr milden Reaktionsbedingungen, unter Normaldruck nämlich und bei einem Einsetzen der Reaktion ab 135 °C.

Eine mögliche großtechnische Anwendung wäre z. B. die Überführung von (solar produziertem) leichtflüchtigem Wasserstoff, dessen Lagerung und Speicherung einen hohen technischen Aufwand erfordert, in Erdgas. „Um diesen Schritt sinnvoll gehen zu können, müssten allerdings Katalysatoren entwickelt werden, die anstelle von Kohlenmonoxid das Treibhausgas Kohlendioxid verwenden.

Mit solchen Katalysatoren ließe sich dann freilich eine nachhaltige Prozesskette schließen, die mit einem biotechnologisch produzierten Trägermaterial beginnt und in der Produktion eines Energieträgers aus leicht verfügbaren bzw. umweltverträglich und ressourceneffizient hergestellten Zwischenstoffen wie Kohlendioxid oder Solarwasserstoff einen konsequenten Abschluss fände“, erläutert Volkmer. Mit seinem Festkörperchemie-Lehrstuhl ist er Mitglied sowohl im Institut für Physik als auch im Institut für Materials Resource Management (MRM) der Universität Augsburg. An beiden Instituten ist die Entwicklung nachhaltiger Prozess- und Stoffketten ein wichtiger Themenschwerpunkt.

Bakteriell produzierte Nanocellulose, mit der Volkmer und sein Team arbeiten, sind für materialtechnologische Anwendungen derzeit weder in größeren Mengen noch zu vertretbaren Kosten verfügbar. Deshalb werden derzeit am Anwenderzentrum für Material- und Umweltforschung (AMU) der Universität Augsburg eigene biotechnologische Produktionskapazitäten aufgebaut, ein Biotechnologielabor wurde speziell hierfür bereits eingerichtet.

Erste Ergebnisse bei der Produktion bakterieller Nanozellulose, die durch Umwandlung einfachen Haushaltszuckers (Saccharose) erfolgt, zeigen, dass durch optimierte Zellkulturverfahren und Variation der Nährmedien ein starker Einfluss auf die Fasermorphologie ausgeübt werden kann. „Das ist eine wichtige Voraussetzung, um Cellulosefilze für verschiedenste Anwendungen maßschneidern zu können“ erläutert Volkmer und ist zuversichtlich, dass die bakterielle Nanocellulose sich hervorragend in die in Augsburg vorhandene Expertise auf dem Gebiet der funktionalen Carbonmaterialien (Carboterials®) einfügen wird.

Publikation:

Andreas Kalytta-Mewes, Sebastian Spirkl, Sebastian Tränkle, Manuel Hambach und Dirk Volkmer: Carbon supported Ru clusters prepared by pyrolysis of Ru precursor-impregnated biopolymer fibers, J. Mater. Chem. A, 2015, Advance Article, DOI: 10.1039/C5TA04253D

http://pubs.rsc.org/en/Content/ArticleLanding/2015/TA/c5ta04253d#!divAbstract

Ansprechpartner:

Prof. Dr. Dirk Volkmer
Lehrstuhl für Festkörper- und Materialchemie
Institut für Physik
Universität Augsburg
D-86135 Augsburg
Telefon: +49(0)821-598-3032
dirk.volkmer@physik.uni-augsburg.de
www.physik.uni-augsburg.de/chemie

Weitere Informationen:

http://pubs.rsc.org/en/Content/ArticleLanding/2015/TA/c5ta04253d#!divAbstract

Klaus P. Prem | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie