Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rechts, links oder durch die Mitte?

12.05.2011
Das Gehirn plant alle Optionen bis ins Detail und ermöglicht uns damit gründliche Entscheidungen

Der Stürmer läuft sich frei, bekommt den Ball, schießt – und Tor, Tor, Tor! Was ist da passiert? Der anlaufende Stürmer musste sich entscheiden: Zielt er auf den Torwart in der Annahme, dass dieser in eine der Ecken springen wird, oder zielt er auf den leeren Raum links oder rechts neben ihm?

Die beiden Alternativen erfordern eine unterschiedliche Planung der Bewegung. Während der Torwart ein direktes, also physisch sichtbares Ziel darstellt, ist die Ecke ein indirektes Ziel, ein leerer Raum, der sich nur aus der Lage der ihn umgebenden Objekte und Personen ergibt. Wissenschaftler vom Deutschen Primatenzentrum (DPZ) und vom Bernstein Zentrum für Computational Neuroscience in Göttingen haben in ihrer jetzt veröffentlichten Studie entschlüsselt, wie die Nervenzellen im Gehirn von Rhesusaffen die Entscheidung für die eine oder andere Bewegung ermöglichen. Sie konnten zeigen, dass das Gehirn sich nicht nur auf abstrakte Entscheidungen verlässt, sondern die erforderlichen Bewegungen mit in die Kosten-Nutzen-Rechnung einfließen lässt (Neuron, 2011).

„Der Stürmer muss sich in einer unsicheren Wahlsituation – er weiß nicht, was der Torwart tun wird – für eines von zwei Zielen mit unterschiedlichem Charakter entscheiden. Wie dieser Entscheidungsprozess im Hirn gesteuert wird, wollten wir herausfinden“, so Christian Klaes, Erstautor der Studie. Sowohl der Torwart als auch die Ecke sind so genannte motorische Ziele, also Ziele, die wir durch eine Bewegung von Armen oder Beinen erreichen wollen. Es ist seit längerem bekannt, dass die Planung zielgerichteter Bewegungen von zwei Großhirnregionen gesteuert wird: von der parietalen Armbewegungsregion und der dorsalen prämotorischen Rinde.

Die Göttinger Neurowissenschaftler wollten feststellen, was in den für die Bewegungsplanung zuständigen Gehirnregionen passiert, wenn erst noch überlegt werden muss, welche der Bewegungen ausgeführt werden soll. Die Entscheidung könnte auf der Ebene der Informationsverabeitung getroffen werden, auf der die verschiedenen Regeln kodiert werden, nach denen das Bewegungsziel gewählt werden kann. In dem Fall würden die räumlichen Regeln „direkt“ (also auf den Torwart) und „indirekt“ (in die Ecke) gegeneinander abgewogen werden. Trifft dies zu, so sollten in den Planungsarealen des Gehirns nur die Nervenzellen aktiv sein, welche die Bewegung auf das Ziel planen, das der ausgewählten Regel entspricht. Alternativ könnte die Entscheidung auf der Ebene erfolgen, auf der die konkurrierenden motorischen Ziele gespeichert sind, die mit den beiden Regeln (direkt und indirekt) verknüpft sind. In diesem Fall würde der Bewegungsplan für den Geradeausschuss gegen den Bewegungsplan für den Eckschuss abgewogen. Dementsprechend sollten die beiden alternativen Bewegungspläne gleichzeitig nebeneinander im Gehirn existieren und miteinander konkurrieren.

Die Wissenschaftler um Alexander Gail haben Rhesusaffen darauf trainiert, entweder ein direktes Ziel in Form eines Punktes auf einem Monitor, in unserem Beispiel also den Torwart, oder ein indirektes Ziel, wie die leere Ecke, zu berühren. Der Versuchsaufbau sah so aus, dass der Rhesusaffe für kurze Zeit einen visuellen Reiz in Form eines Punktes gezeigt bekam, der sich entweder auf der linken oder rechten Seite des Monitors befand. Nach einer kurzen Merkphase erschien manchmal ein grünes oder ein blaues Viereck. Erschien das grüne Viereck, so musste der Punkt direkt berührt werden, erschien das blaue Viereck, so sollte die dem Punkt gegenüberliegende Seite berührt werden. Erhielt der Affe keinen grünen oder blauen Hinweisreiz, so konnte er selbst entscheiden, welche Monitorseite er berühren wollte. Gleichzeitig wurde die Aktivität der Nervenzellen im sensomotorischen Bereich des Gehirns mit Mikroelektroden gemessen. Diese Methode erlaubt es, die elektrische Aktivtät der Nervenzellen höchst präzise und zeitlich genau zu erfassen, was eine Voraussetzung ist, um die sehr selektiven und dynamischen Entscheidungsvorgänge untersuchen zu können. Bemerkenswerterweise zeigte sich dabei, dass sowohl die Neurone für die direkten als auch für die indirekten räumlichen Ziele aktiv waren.

„Unsere Ergebnisse zeigen, dass das Gehirn die alternativen Bewegungen, also sowohl den Schuss in die Mitte als auch den in die Ecke, parallel plant, bevor die letztendliche Entscheidung fällt“, so Klaes. Gail sieht eine deutliche Parallele zu Entscheidungen für verschiedene physische Ziele, wie beispielsweise die Mitspieler der Mannschaft. „Das sensomotorische System scheint bei regelbasierten Entscheidungen zunächst alle möglichen Bewegungsziele abzubilden, um dann dieselben Verarbeitungsmechanismen zu nutzen, die auch bei der Wahl zwischen verschiedenen physischen Zielen zum Einsatz kommen“, so Gail. Die Wissenschaftler konnten außerdem zeigen, dass gleichzeitig vorhandene Bewegungsziele miteinander konkurrieren und dass sie von bestimmten Vorlieben der Affen beeinflusst werden. Letztere wurden durch Gabe von Belohnungen bei den Tieren hervorgerufen.

Primaten fällen ihre Entscheidungen für bestimmte Verhaltensweisen also nicht nur durch ein Abwägen von abstrakten Regeln, sondern beziehen auch die Bewegungsziele mit ein, die mit den verschiedenen Regeln verbunden sind. Den Entscheidungsprozess auf verschiedene Verarbeitungsschritte im Gehirn zu verteilen hat den Vorteil, dass eine umfassendere Kosten-Nutzen-Rechnung möglich ist. „Unserem Torschützen reicht es nicht zu wissen, dass der Torwart meistens nach links springt, er muss auch bedenken, dass ihm die Schüsse auf die gegenüberliegende Seite oft nicht gut gelingen. Er muss also beide Faktoren abwägen, um erfolgreich zu sein“, so Alexander Gail. „Unsere Damennationalmannschaft scheint diese Zusammenhänge intuitiv zu verstehen – zumindest lässt ihr Erfolg dies vermuten“, so Gail in Hinblick auf die kommende Fußballweltmeisterschaft.

Originalpublikation
"Choosing Goals, Not Rules: Deciding among Rule-Based Action Plans", Christian Klaes, Stephanie Westendorff, Shubhodeep Chakrabarti, Alexander Gail, Neuron, 2011, doi:10.1016/j.neuron.2011.02.053
Kontakt
Dr. Alexander Gail
Tel: 0551 3851-358
E-Mail: agail@gwdg.de
Dr. Susanne Diederich (Presse- und Öffentlichkeitsarbeit)
Tel: 0551 3851-359
E-Mail: sdiederich@dpz.eu
Die Deutsches Primatenzentrum GmbH (DPZ) / Leibniz-Institut für Primatenforschung in Göttingen betreibt Grundlagenforschung an und mit Primaten auf den Gebieten der organismischen Biologie, der Infektionsforschung und der Neurowissenschaften. Sie unterhält außerdem fünf Freilandstationen im Ausland und ist Kompetenz- und Referenzzentrum für alle Belange der Primatenforschung. Das DPZ ist eine der 87 Forschungs- und Infrastruktureinrichtungen der Leibniz-Gemeinschaft (http://www.wgl.de/).

Das Bernstein-Zentrum Berlin ist Teil des nationalen Bernstein Netzwerks Computational Neuroscience (NNCN). Das NNCN wurde vom BMBF mit dem Ziel gegründet, die Kapazitäten im Bereich der neuen Forschungsdisziplin Computational Neuroscience zu bündeln, zu vernetzen und weiterzuentwickeln. Das Netzwerk ist benannt nach dem deutschen Physiologen Julius Bernstein (1835-1917).

Dr. Susanne Diederich | idw
Weitere Informationen:
http://www.dpz.eu

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie