Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Rechnung mit dem Wirt machen – neue Wege gegen die Grippe

07.02.2013
Medikamente gegen Viren zu entwickeln ist extrem schwierig – ständig verändern diese ihr Erbgut und passen sich neuen Umweltbedingungen an.
Kaum wird ein Wirkstoff gegen ein Virus gefunden, ist er schon veraltet, weil die Viren resistent geworden sind. In dem EU-geförderten FP7-Projekt ANTIFLU, das vom Berliner Max-Planck Institut für Infektionsbiologie (Prof. T.F. Meyer) koordiniert wird und in dem das Leibniz-Institut für Molekulare Pharmakologie (FMP) Partner ist, gehen die Forscher einen ganz neuen Weg: nicht mehr die Krankheitserreger selbst werden angegriffen, sondern körpereigene Proteine gezielt ausgeschaltet, ohne die sich die Viren nicht vermehren können.

Wenn die Grippewelle auf Deutschland zu schwappt, gibt es nur einen Schutz: impfen. Wen es erwischt hat, dem kann die Medizin nur begrenzt helfen. Denn bisherige Medikamente gegen die Influenza könnten in Zukunft nicht mehr ausreichend wirksam sein. Das liegt vor allem an der hohen Mutationsrate von Viren: sie verändern sich von Generation zu Generation und passen sich damit veränderten Umweltbedingungen an. Somit vollzieht sich ihre Evolution verglichen mit der des Menschen in atemberaubender Geschwindigkeit. Unser Immunsystem hat kaum eine Chance, sich auf die Erreger einzustellen, bei Viruserkrankungen hinkt es häufig hinterher und es kann Tage dauern, bis die Erkrankung besiegt ist. So können Viren zum Beispiel ihre Oberfläche verändern, so dass Antikörper nicht mehr binden können. Ebenso schnell können auch Medikamente ihre Wirksamkeit verlieren.

Allerdings haben Viren einen Schwachpunkt: Sie sind keine eigenständigen Lebewesen und können sich ohne eine lebende Zelle als Wirt nicht vermehren. Das haben sich Forscher des EU-Projekts ANTIFLU zunutze gemacht. Wissenschaftler des Max-Planck-Instituts (MPI) für Infektionsbiologie haben eine Strategie entwickelt, bei der Wirkstoffe bestimmte Proteine in Zellen ausschalten, auf die Viren bei ihrer Vermehrung angewiesen sind. Die Forscher verwendeten dazu eine kurze synthetische RNA (Ribonukleinsäure), die komplementär zur Boten-RNA in der Zelle – einer Blaupause zur Bildung des Proteins – aufgebaut ist. Treffen die RNA-Sequenzen aufeinander, wird die Boten-RNA abgebaut, so dass kein neues Protein hergestellt werden kann.
Dr. Jens von Kries vom FMP sagt: „Mit dem Ausschalten von Proteinen dürfen wir natürlich keinen Schaden für die Zelle anrichten. Würde dadurch zum Beispiel die ganze Zelle absterben, hätten wir nichts gewonnen.“ Die MPI-Forscher haben daher in einer genomweiten Studie mit ca. 60.000 solcher kurzen RNAs systematisch für alle menschlichen Proteine geprüft, ob sie für die Vermehrung von Viren wichtig sind und ob gleichzeitig die Zelle deren Verlust über einen begrenzten Zeitraum verkraften kann. Etwa 300 Proteine in der Zelle haben sich als geeigneter Angriffspunkt für mögliche Therapien herausgestellt. Mit der Screening Unit des FMP, in deren Sammlung 35.000 Substanzen enthalten sind, suchen die Wissenschaftler nun für ausgewählte Proteine nach Wirkstoffen, die deren Funktion blockieren können. Im MPI wird anschließend die Wirkung in zellulären Systemen getestet, um nachzuweisen, dass auch die gefundenen chemischen Wirkstoffe die Virusreplikation hemmen können. Sind die wirksamen Substanzen identifiziert, müssen die Forscher noch sichergehen, dass sie nicht toxisch sind oder die Zellen schädigen.

So erhalten die Wissenschaftler durch sehr umfangreiches systematisches Ausprobieren mögliche Kandidaten für gute Wirkstoffe. Diese erforschen sie nun genauer: Sie nehmen z.B. das genaue Zusammenspiel zwischen Wirkstoff und Protein unter die Lupe. Die Projektpartner von der Hebrew University in Jerusalem entschlüsseln diese komplexe Struktur, um hinterher die Bindungsstärke und damit die Wirkung verbessern zu können.

Wer sich in diesem Jahr ein Grippevirus einfängt, muss sich allerdings mit den klassischen Methoden behelfen – Bettruhe, Tee und Wadenwickel. Bis ein neues Medikament auf dem Markt ist, vergehen noch viele Jahre. Die Planung des EU-ANTIFLU-Konsortiums geht davon aus, dass am Ende des Projekts eine erste klinische Studien beginnen könnte.

Projektpartner
Max-Planck-Institut für Infektionsbiologie, Berlin (Koordination)
Vichem Chemie Research Ltd., Ungarn
Aarhus University, Dänemark
Lead Discovery Center GmbH, Dortmund
Institut Pasteur, Frankreich
ARTTIC, Frankreich
BioTest, Tschechien
Imperial College London, GB
RiboTask, Dänemark
The Hebrew University of Jerusalem, Israel
Leibniz-Institut für Molekulare Pharmakologie, Berlin

Kontakt:
Leibniz-Institut für Molekulare Pharamakologie (FMP)
Dr. Jens Peter von Kries, Leitung Screening Unit
Tel.: +49(0)30 9406 2982
kries@fmp-berlin.de

Gesine Wiemer | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.antiflu-project.eu/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie