Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rasche Umweltveränderungen begünstigen Artensterben

19.10.2017

Interaktionen zwischen Arten spielen eine Schlüsselrolle für die Biodiversität. Ein Forscherteam mit UZH-Beteiligung zeigt erstmals, dass die Koevolution von Arten innerhalb komplexer Netzwerke nicht nur direkt durch ihre Partner, sondern auch indirekt durch weitere Arten beeinflusst wird. Dies verlangsamt die Anpassungsfähigkeit artenreicher Ökosysteme an sich verändernde Umweltbedingungen. Die raschen Klimaveränderungen dürften daher das Risiko des Artensterbens erhöhen.

Wenn Lebewesen miteinander interagieren, entwickeln sie sich nicht unabhängig voneinander sondern miteinander. Dieser Prozess nennt sich Koevolution. In Räuber-Beute-Systemen begünstigt die natürliche Selektion etwa Raubtiere, die ihre Beute besser fangen können, sowie Beutetiere, die den Raubtieren besser entkommen können.


Nicht nur direkte Interaktionen von Artenpaaren wie blühende Pflanzen und Insektenbestäuber beeinflussen die Koevolution, sondern auch indirekte Effekte weiterer Spezies.

Mark A. Chappell

In mutualistischen Gemeinschaften, in denen zwei Arten von ihrer Beziehung gegenseitig profitieren, werden etwa Pflanzen begünstigt, die besser von Insekten bestäubt werden, sowie Insekten, die besser Pollen und Nektar aus den Blüten gewinnen.

Direkte und indirekte Effekte beeinflussen Koevolution

Die Forschung zur Koevolution hat sich bisher auf Paare von Arten konzentriert, die eng miteinander interagieren und somit stark voneinander abhängen. Eiche und Eichelhäher oder Ameisen und Akazienbäume, die sie beschützen, sind Beispiele dazu. Nun zeigt ein internationales Forscherteam mit Beteiligung der Universität Zürich, dass koevolutive Prozesse auch in komplexen Ökosystemen mit zahlreichen Arten stattfinden.

Dabei treiben nicht nur die direkten Beziehungen zwischen zwei Arten die Koevolution eines Artenpaares voran. Zusätzlich wird diese auch indirekt durch weitere Spezies beeinflusst, mit denen mindestens eine oder gar beide Arten des Paares nicht direkt interagieren. «Je nach Art der Gemeinschaft beeinflussen diese indirekten Effekte die Koevolution sogar stärker als es direkte Wechselwirkungen tun», ergänzt Jordi Bascompte, UZH-Professor am Institut für Evolutionsbiologie und Umweltwissenschaften.

Interaktion von 75 Artengemeinschaften untersucht

Für ihre Analyse verwendeten die Wissenschaftler 75 Netzwerke von miteinander interagierenden Arten, die im Meer und auf dem Land leben. Diese biologischen Gemeinschaften unterscheiden sich in der Anzahl der Beziehungen, in denen eine Spezies mit anderen Arten steht, sowie der Intensität der gegenseitigen Interaktionen.

Auf der einen Seite des Spektrums sind dies hochspezialisierte Gemeinschaften wie etwa die Symbiose von Clownfischen und Seeanemonen. Hier interagieren die Lebewesen jeweils sehr eng innerhalb von Artpaaren. Auf der anderen Seite befinden sich Netzwerke, in denen die Arten mit vielen anderen in Beziehung stehen: z.B. Bienen, die verschiedene Pflanzenarten bestäuben, oder Pflanzen, deren Samen von mehreren Vogel- und Säugetierarten verbreitet werden.

Je spezialisierter die Arten, desto stärker wirken indirekte Effekte

Ausgehend von diesen 75 mutualistischen Netzwerken entwickelten die Forschenden ein mathematisches Modell, mit dem sie simulieren konnten, wie die Koevolution die Eigenschaften der Arten innerhalb dieser biologischen Gemeinschaften beeinflusst.

Dabei zeigte sich, dass in kleinen Gemeinschaften mit wenigen engen Beziehungen der Einfluss indirekter Effekte schwächer ist als in artenreichen Netzwerken, in denen die Lebewesen über Partnerschaften zu mehreren anderen Arten verfügen. «Im zweiten Typ von Netzwerken wird die Koevolution der spezialisiertesten Arten – jene mit den wenigsten Partnern – sogar stärker von indirekten Effekten beeinflusst als von ihren direkten Partnern», sagt Bascompte.

Rasche Umweltveränderungen gefährden Arten grosser Netzwerke

In grossen biologischen Netzwerken, in denen viele Arten miteinander interagieren, lösen Umweltveränderungen Kaskaden von evolutionären Veränderungen aus, die sich über das Netzwerk ausbreiten. Komplexe Ökosysteme passen sich daher nur sehr langsam an Umweltveränderungen an. Verändern sich die Umweltbedingungen langsam, helfen indirekte Effekte, dass mutualistische Artengemeinschaften über lange Zeiträume erhalten bleiben.

Verändern sich diese jedoch rasch, führt die durch indirekte Effekte verlangsamte Anpassung des Netzwerks dazu, dass die Arten anfälliger werden. «Die raschen, durch Menschen bedingten Klimaveränderungen bergen das Risiko, dass viele Arten in grossen Netzwerken aussterben», folgert Jordi Bascompte.

Literatur:
Paulo R. Guimarães Jr., Mathias M. Pires, Pedro Jordano, Jordi Bascompte, John N. Thompson. Indirect effects drive coevolution in mutualistic networks. Nature. 18 October 2017. DOI: 10.1038/nature24273

Kontakt:
Prof. Dr. Jordi Bascompte
Institut für Evolutionsbiologie und Umweltwissenschaften
Universität Zürich
Tel. +41 44 635 61 26
E-Mail: jordi.bascompte@ieu.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/de/medienmitteilungen/2017/Koevolution-Netzwerke.html

Kurt Bodenmüller | Universität Zürich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte