Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rätsel um Erkennung ungefalteter Proteine gelöst: Das Schloss formt den Schlüssel

15.02.2011
Proteine erkennen sich normalerweise an ihrer spezifischen dreidimensionalen Struktur. Passt der Schlüssel zum Schloss, kann eine Reaktion stattfinden. Doch es gibt auch Reaktionen, bei denen der Schlüssel zu Beginn der Reaktion noch gar keine Form besitzt.

Chemiker der Technischen Universität München (TUM) und der Max-Planck-Forschungsstelle für die Enzymologie der Proteinfaltung (Halle/Saale) haben nun an einem Beispiel gezeigt, wie das funktionieren kann. Ihre Ergebnisse erscheinen in dieser Woche in den Proceedings of the National Academy of Science (PNAS).

Wechselwirkungen zwischen Proteinen sind von grundlegender Bedeutung für eine Vielzahl von Prozessen in jeder lebenden Zelle. Doch um eine biologische Funktion ausüben zu können, müssen die Proteine erst ihre spezifische, dreidimensionale Form annehmen. In den letzten Jahren wurde eine Reihe von Reaktionen beschrieben, bei denen einer der Wechselwirkungspartner seine biologisch aktive Struktur erst während der Bindung einnimmt. Ein großes Rätsel blieb dabei, wie ihre Bindungspartner solche unstrukturierten Proteine überhaupt erkennen können.

Die Wissenschaftler um Professor Thomas Kiefhaber (TUM) stellten sich die Frage, ob für die Erkennung lokale Eigenschaften genügen oder ob der unstrukturierte Bindungspartner zunächst eine spezifische räumliche Struktur einnehmen muss. Dafür kämen regelmäßige Strukturelemente wie die wendeltreppenförmigen α-Helices oder β-Faltblätter in Frage, bei denen interne Wasserstoffbrückenbindungen ausgebildet werden.

In Zusammenarbeit mit der Gruppe von Professor Gunter Fischer (Max Planck Forschungsstelle für die Enzymologie der Proteinfaltung Halle/Saale) entwickelten die Wissenschaftler eine neue Methode, die es erstmals erlaubt, die Ausbildung einzelner Wasserstoffbrückenbindungen im Verlaufe eines Bindungsprozesses zu verfolgen.

Als Modellsystem benutzten sie das Enzym Ribonuklease S, das in seiner aktiven Form aus dem S-Protein und dem α-helikalen S-Peptid besteht. Während das S-Protein eine definierte dreidimensionale Form besitzt, ist das S-Peptid allein zunächst ungefaltet. Die Forscher untersuchten nun, ob das S-Protein das unstrukturierte S-Peptid oder eine geringe Population des Peptids in helikaler Konformation erkennt. Dafür wurden mit Hilfe chemischer Proteinsynthese gezielt Sauerstoffatome in Peptidbindungen des S-Peptids durch Schwefelatome ersetzt, wodurch einzelne Wasserstoffbrückenbindungen destabilisiert werden.

Zeitabhängige Messungen des Bindeprozesses der veränderten Peptide zeigten nun, dass sich die Wasserstoffbrücken im S-Peptid und damit die α-helikale Struktur erst nach der Bindung an das S-Protein ausbilden und somit für die Erkennung nicht wichtig sein können.

Die Protein- Protein Erkennung hingegen erfolgt stattdessen über lokale hydrophobe Wechselwirkungen des S-Proteins mit zwei räumlich eng begrenzten Bereichen des unstrukturierten S-Peptids. Diese Ergebnisse sind von grundlegender Bedeutung für das Verständnis des Mechanismus von Protein-Protein Wechselwirkungen. Die entwickelte Methode kann in Zukunft auch in anderen Systemen eingesetzt werden, um die Strukturbildung in Proteinen detailliert zu untersuchen.

Die Forschungsarbeit wurde unterstützt aus Mitteln des Bundesministeriums für Bildung und Forschung (ProNet-T3) und der Deutschen Forschungsgemeinschaft (Exzellenzcluster Munich Center for Integrated Protein Science).

Publikation:

Mapping backbone and side-chain interactions in the transition state of a coupled protein folding and binding reaction, Annett Bachmann, Dirk Wildemann, Florian Praetorius, Gunter Fischer, and Thomas Kiefhaber PNAS, Early Edition, Publikation Online in der Woche vom 14.02.2011, http://www.pnas.org/cgi/doi/10.1073/pnas.1012668108

Kontakt:
Prof. Dr. Thomas Kiefhaber
Technische Universität München
Lehrstuhl für Biophysikalische Chemie
Lichtenbergstr. 4, 85748 Garching, Germany
Tel: +49 89 289 13420 –Fax: +49 89 289 13416
E-Mail: t.kiefhaber@ch.tum.de
Die Technische Universität München (TUM) ist mit rund 460 Professorinnen und Professoren, 7.500 Mitarbeiterinnen und Mitarbeitern (einschließlich Klinikum rechts der Isar) und 26.000 Studierenden eine der führenden technischen
Universitäten Europas. Ihre Schwerpunktfelder sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften, Medizin und Wirtschaftswissenschaften. Nach zahlreichen Auszeichnungen wurde sie 2006 vom Wissenschaftsrat und der Deutschen Forschungsgemeinschaft zur Exzellenzuniversität gewählt. Das weltweite Netzwerk der TUM umfasst auch eine Dependance in Singapur. Die TUM ist dem Leitbild einer unternehmerischen

Universität verpflichtet.

Dr. Andreas Battenberg | Technische Universität München
Weitere Informationen:
http://www.tum.de
http://dante.phys.chemie.tu-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden Hinweise auf verknotete Chromosomen im Erbgut
20.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Aus der Moosfabrik
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise