Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Radioaktives Arzneimittel ermöglicht die Diagnostik von Knochenmetastasen

12.04.2012
Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) hält die erste deutsche Zulassung für ein radioaktives Arzneimittel mit dem Wirkstoff Natrium(Fluor-18)fluorid, mit dem sehr zuverlässig Knochenmetastasen diagnostiziert werden können.

Verschiedene Krebserkrankungen können Absiedlungen (Metastasen) in Knochen bilden. Die heute gängige Methode, Knochenmetastasen nachzuweisen, ist die Skelettszintigraphie. Für Knochenmetastasen werden üblicherweise Radiopharmaka verwendet, die mit dem Radionuklid Technetium (Tc-99m) markiert sind, einem künstlichen radioaktiven Metall.

Technetium-99m wird weltweit in einer begrenzten Anzahl von Forschungsreaktoren hergestellt. In der jüngsten Vergangenheit kam es – bedingt durch das Alter dieser Reaktoren – wiederholt zu Versorgungsengpässen mit Technetium-99m, die auch die Patientenversorgung hinsichtlich der nuklearmedizinischen diagnostischen Möglichkeiten der Skelettszintigraphie stark beeinträchtigte. Diese Situation war die Motivation für das HZDR, eine Zulassung für das radioaktiv markierte Natriumfluorid ([18F]NaF) mit dem Arzneimittelnamen NaFRos zu beantragen, mit dem ebenfalls Knochenmetastasen nachgewiesen werden können, und dies mit hoher Sensitivität. Mit der Zulassung durch das Bundesinstitut für Arzneimittel und Medizinprodukte kann das HZDR das radioaktiv markierte Natriumfluorid nun auch an andere nuklearmedizinische Einrichtungen abgeben – zuvor konnte die Substanz nur im eigenen Haus an Patienten angewendet werden.

Radiopharmaka für die Knochenszintigraphie dienen zum Nachweis von Knochenarealen mit erhöhtem Knochenstoffwechsel und reichern sich in Knochenmetastasen oder verletztem Knochengewebe drei bis zehn Mal mehr an als im normalen Knochengewebe. NaFRos übertrifft mit seiner absoluten Anreicherung in Knochengewebe sogar Radiopharmaka auf Technetium-99-Basis um circa das Doppelte, weshalb der Einsatz von NaFRos weitere Vorteile im Vergleich zu den gängigen Radiopharmaka mit sich bringt.
Dr. Frank Füchtner, der zuständige Leiter für die Herstellung von radioaktiven Arzneimitteln im HZDR, sagt: „Mit unserem zugelassenen Radiopharmakon NaFRos werden sowohl Nachweis wie auch Aussagen zur Lokalisation von Knochenmetastasen verbessert und wir erhoffen uns, dass so auch die Therapie von Patienten entscheidend zielgerichtet beeinflusst wird. Für uns ist aber auch wichtig, dass wir mit unserem Mittel eine zuverlässige Diagnostik von Knochenmetastasen sicherstellen können, die abgekoppelt ist von der nicht immer sichergestellten Verfügbarkeit von Technetium.“

Wie jedes radioaktive Arzneimittel, so gibt auch bei NaFRos die Halbwertszeit des enthaltenen Radionuklids die Reichweite des Vertriebswegs vor. Es können Kliniken, die über eine PET-Kamera verfügen, im Umkreis von rund 250 km beliefert werden. Durch die Abgabe von Radiopharmaka unterstützt das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine moderne Krankenversorgung.

Das Helmholtz-Zentrum Dresden-Rossendorf betreibt gemeinsam mit dem Universitätsklinikum Dresden ein PET-Zentrum (Positronen-Emissions-Tomographie). PET ist ein modernes nuklearmedizinisches Verfahren, bei dem die Verteilung von zuvor applizierten Radiopharmaka im Körper des Patienten mit einer PET-Kamera mit hoher Sensitivität gemessen werden kann. Die PET-Bilder lassen genaue Aussagen zu Lokalisation und Stoffwechselverhalten von Tumoren und Metastasen zu. Dazu können im HZDR 13 verschiedene Substanzen unter pharmazeutischen Bedingungen („Gute Herstellungspraxis“) hergestellt und im PET-Zentrum vor allem auf dem Gebiet der Tumor-Diagnostik angewandt werden. Mehr als 1.000 Patienten werden hier jährlich untersucht. NaFRos ist die zweite arzneimittelrechtlich zugelassene Substanz, die das HZDR nun auch an andere nuklearmedizinische Einrichtungen abgeben kann. Den Vertrieb übernimmt wieder die ROTOP Pharmaka AG, ein eingespielter Partner auf dem Standort.

Weitere Informationen
Dr. Frank Füchtner | Prof. Jörg Steinbach
Institut für Radiopharmazie
Helmholtz-Zentrum Dresden-Rossendorf
Tel.: 0351 260-2804 | -3170
f.fuechtner@hzdr.de | j.steinbach@hzdr.de

Pressekontakt
Dr. Christine Bohnet
Pressesprecherin
Tel. 0351 260-2450 oder 0160 969 288 56
c.bohnet@hzdr.de

Helmholtz-Zentrum Dresden-Rossendorf
Bautzner Landstr. 400
01328 Dresden

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) hat das Ziel, langfristig ausgerichtete Spitzenforschung auf gesellschaftlich relevanten Gebieten zu leisten. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie verhält sich Materie unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
• Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
• Wie nutzt man Ressourcen und Energie effizient und sicher?

Zur Beantwortung dieser wissenschaftlichen Fragen werden fünf Großgeräte mit teils einmaligen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.

Das HZDR ist seit 1.1.2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Leipzig, Freiberg und Grenoble und beschäftigt mehr als 800 Mitarbeiter – davon ca. 400 Wissenschaftler inklusive 140 Doktoranden.

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics