Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

PTB entwickelt mit internationalen Partnern Echtzeit-Überwachung von luftgetragenen Chemikalien bei der Halbleiterfertigung

05.08.2013
Wirklich reine Reinräume

Extreme Reinheit ist eine Grundvoraussetzung bei der Produktion von Halbleitern. Damit die Herstellung der winzigen Komponenten nicht durch Partikel in der Luft gestört wird, findet sie in speziellen Reinräumen statt.


In Reinräumen wie diesem soll künftig die Luftqualität in Echtzeit überwacht werden, damit empfindliche Produktionsprozesse nicht von luftgetragenen Chemikalien gestört werden. (Foto: PTB)

Durch verbesserte Technologien konnte das Problem störender Staubpartikel in den letzten Jahren bereits stark reduziert werden. Doch bei den stetig kleiner werdenden Abmessungen der Bauteile in der Halbleiterindustrie wird auch die luftgetragene Kontaminierung von Reinräumen durch chemische Substanzen, die sogenannte Airborne Molecular Contamination (AMC), zur ernsthaften Herausforderung. So können bereits kleinste Molekülkonzentrationen Schäden verursachen.

Ein europäisches Projekt unter Beteiligung der Physikalisch-Technischen Bundesanstalt (PTB) soll nun neue laserbasierte Methoden zur Messung dieser AMC untersuchen. In einer vorbereitenden Studie wurden zunächst die wichtigsten zu messenden Substanzen identifiziert.

Sie sind in Möbeln enthalten und treten aus manchen Fußbodenbelägen aus, und sie stören empfindliche Produktionsprozesse in der Halbleiterfertigung: luftgetragene Schadstoffe wie z.B. Ammoniak und Formaldehyd. In einer Studie im Rahmen eines neuen Forschungsprojekts zur Überwachung der Luftgüte in Reinräumen konnten diese beiden Substanzen als wichtige Schadstoffe bei der Herstellung von Halbleiter-Mikrostrukturen ausgemacht werden, die im Fokus des Projekts stehen sollen. „Ammoniak bleibt überall haften und kann so leicht von außen in den Reinraum getragen werden“, erklärt Anne Rausch von der PTB. „Außerdem entsteht es manchmal auch durch die Produktionsprozesse im Reinraum selbst.“

Ziel des jetzt gestarteten europäischen Kooperationsprojekts ist es, Methoden zu entwickeln, die die Echtzeit-Überwachung der Konzentration solcher Stoffe in der Luft von Reinräumen ermöglicht. „Wenn dann ein AMC-Anstieg registriert wird, kann die Produktion angehalten werden. Die betroffenen Komponenten können kontrolliert und notfalls entsorgt werden“, sagt Rausch.

Dabei strebt das Projekt Echtzeitmessungen bei einer Nachweisgrenze im Bereich von wenigen AMC-Teilchen in einer Milliarde Gesamtteilchen (ppb) an. Zu diesem Zweck sollen zunächst bestehende Methoden der Laser-Spektroskopie hinsichtlich ihrer Anwendbarkeit für AMC-Messungen verglichen und anschließend für die AMC-Überwachung optimiert werden. Anne Rausch und ihr Team untersuchen in der PTB die photoakustische Spektroskopie und die Cavity-Ring-Down-Spektroskopie. Europäische Partnerinstitute prüfen andere Messmethoden auf ihre Tauglichkeit.

Ein weiteres Ziel des Projekts ist die Herstellung von Referenzproben. Dabei handelt es sich um genau gemessene AMC-Konzentrationen, die zur Kalibrierung von Messgeräten verwendet werden können.

jok/ptb

„MetAMC – Metrology for airborne molecular contamination in manufacturing environments“

Das Projekt versammelt neben der PTB auch metrologische Partnerinstitute aus Finnland, der Tschechischen Republik, Italien, Großbritannien, den Niederlanden, die Universität von Turin und die Taiwanesische Firma HCP. Innerhalb des Europäischen Metrologie Forschungsprogramms EMRP wird es von der Europäischen Union mit insgesamt 2,9 Millionen Euro finanziell gefördert. Die Ergebnisse des Projekts werden europäischen Partnern in der Halbleiterindustrie unter anderem in Form von „Good Practice Guides“ für AMC-Messungen zur Verfügung gestellt. In einem Workshop am Ende des Projektes sollen die Resultate interessierten Teilnehmern vorgestellt werden. Informationen zur Anmeldung werden zu gegebener Zeit auf der Projektwebsite zur Verfügung gestellt. Kommerziell direkt verwertbare Arbeitsergebnisse werden zum Investitionsschutz der europäischen Industrie patentiert.

Weitere Informationen zum Projekt unter
http://www.ptb.de/emrp/ind63-home.html
Ansprechpartner
Dr. Anne Rausch: PTB-Arbeitsgruppe 3.22 Metrologische Molekülspektroskopie, Tel. (0531) 592-3221, E-Mail: anne.rausch@ptb.de

Dr. Olav Werhahn, PTB-Arbeitsgruppe 3.22 Metrologische Molekülspektroskopie, Tel. (0531) 592-3123, E-Mail: olav.werhahn@ptb.de

Physikalisch-Technische Bundesanstalt (PTB)

In Braunschweig und Berlin kommt die Zeit aus Atomuhren, erstrecken sich Längen bis weit hinab in die Nanowelt, forschen die Wissenschaftler an grundlegenden Fragen zu den physikalischen Einheiten und die Mitarbeiter in den Laboratorien kalibrieren Messgeräte für höchste Genauigkeitsansprüche. Damit gehört die Physikalisch-Technische Bundesanstalt (an ihren Standorten Braunschweig und Berlin) zu den ersten Adressen in der internationalen Welt der Metrologie. Als das nationale Metrologieinstitut Deutschlands ist die PTB oberste Instanz bei allen Fragen des richtigen und zuverlässigen Messens. Sie ist technische Oberbehörde des Bundesministeriums für Wirtschaft und Technologie (BMWi) und beschäftigt an den beiden Standorten Braunschweig und Berlin insgesamt rund 1800 Mitarbeiter.

Johannes Kaufmann
Presse- und Öffentlichkeitsarbeit
Physikalisch-Technische Bundesanstalt (PTB)
Bundesallee 100
38116 Braunschweig
Tel. 0531-592-9328
Fax 0531-592-3008
E-Mail: johannes.kaufmann@ptb.de

Johannes Kaufmann | PTB
Weitere Informationen:
http://www.ptb.de
http://www.ptb.de/de/aktuelles/archiv/presseinfos/pi2013/pitext/pi130805.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften