Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Protein-Schere stoppt Immunaktivierung bei Entzündung

07.06.2013
Neu entdecktes Enzym OTULIN schaltet Entzündungsprotein ab

Die Bekämpfung von Entzündungen spielt in der Medizin eine große Rolle. Doch ob durch Infektionen, mechanische Belastung oder Immundefekt – die molekularbiologischen Abläufe in den einzelnen Zellen sind bis jetzt noch nicht ausreichend geklärt, um bei allen Formen von Entzündungen medizinisch intervenieren zu können.

Einer Forschergruppe aus Köln, München, Cambridge und Kopenhagen ist es nun gelungen, einen molekularen Schalter zu finden, der Reaktion der Zelle auf eine Entzündung „abstellt“. Die Entdeckung könnte in Zukunft wichtig werden, um überschießende Immunreaktionen bei Entzündungen zu kontrollieren.

OTULIN nennen die Forscher das Enzym, das die Aktivierung des Entzündungsproteins NFkB beendet. Wie eine molekulare Schere kappt es dabei eine bestimmte Eiweißkette vom Protein IKK ab, das NFkB aktiviert. Damit wird die Aktivierung des Immunsystems in der Zelle beendet. Der Artikel mit dem Titel „OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin“, der am 6. Juni in der wissenschaftlichen Zeitschrift Cell veröffentlicht wird, beschreibt erstmalig das Enzym OTULIN, das solche linearen Ketten abspalten kann.
„Die Arbeit ist das Resultat einer erfolgreichen Kollaboration von vier Arbeitsgruppen aus England, Deutschland und Dänemark“, erklärt Professor Dr. Kay Hofmann vom Institut für Genetik. Der Wissenschaftler beschäftigt sich schon seit vielen Jahren mit Ubiquitin-Ketten. Den Ausgangspunkt der Arbeit lieferte eine Entdeckung von Kay Hofmann. Durch Anwendung von bioinformatischen Methoden konnte er in den Sequenzen des humanen Genoms ein neuartiges Protein-spaltendes Enzym aus der sogenannten „OTU-Familie“ identifizieren. Der Gruppe um David Komander, einem Strukturbiologen am LMB in Cambridge (UK), gelang es in der Folge, das neue Enzym strukturell und biochemisch zu bestimmen. Die dabei gefundene Spezifität für die Abspaltung linearer Ubiquitin-Ketten war eine große Überraschung für alle Beteiligten. Da lineare Ketten nur bei der NFkB Aktivierung beschrieben sind, wies dieser Befund sofort auf die biologische Bedeutung dieses Enzyms hin. Die detaillierte Funktion des OTULINs als Gegenspieler des kettenbildenden „LUBAC“-Komplexes wurde schließlich von den Arbeitsgruppen um Daniel Krappmann am Münchener Helmholtz-Institut und um Mads Gyrd-Hansen an der Universität von Kopenhagen aufgeklärt.

Entzündung ist eine Reaktion unserer Zellen auf einen schädigenden Reiz, der z.B. durch eine Infektion oder mechanische Belastung ausgelöst werden kann. Ein zentraler Regulator des Entzündungsprozesses ist ein sogenannter Transkriptionsfaktor namens NFkB, der innerhalb der betroffenen Zellen zum Anschalten verschiedener protektiver Gene führt. „Ohne NFkB würde die Entzündung nicht das Immunsystem aktivieren“, erklärt Professor Hofmann. „Außerdem schützt NFkB die Zellen davor, bei der Entzündung abzusterben. NFkB ist damit eher ein protektiver Faktor als ein Treiber der Entzündung.“

Aufgrund der potentiell zerstörerischen Wirkung einer Entzündung steht das NFkB Protein selbst unter enger Kontrolle. Ein entscheidender Faktor bei der Aktivierung von NFkB ist die Regulation der Proteinkinase IKK durch Anhängen einer Ubiquitin-Kette. Durch diese ‚Ubiquitinierung‘ wird die Kinase aktiviert und aktiviert in der Folge den Entzündungsregulator NFkB.

Das Anhängen von einzelnen Ubiquitin-Molekülen oder Ubiquitin-Ketten ist ein weit verbreiteter Mechanismus zur Regulation der Aktivität oder Lebensdauer von Proteinen. Allerdings hat die IKK-Ubiquitinierung ein Alleinstellungsmerkmal: Die hier verwendeten Ubiquitin-Ketten sind auf eine ganz spezielle Art miteinander verknüpft. Der aktivierte IKK Komplex trägt sogenannte ‚lineare‘ Ubiquitin-Ketten, die in den Zellen offensichtlich nur für die Regulation von NFkB verwendet werden. Da eine therapeutische Kontrolle von Entzündungen von großer medizinischer Bedeutung ist, wird seit einigen Jahren intensiv an der linearen Ubiquitinierung von IKK geforscht.

Seit 2006 kennt man den Enzymkomplex LUBAC, der für die Bildung der linearen Ketten auf IKK verantwortlich ist; im Jahre 2009 wurden erstmalig Faktoren beschrieben, die den Ubiquitinierungs-Status von IKK ‚auslesen‘ können. Nach wie vor unklar war jedoch bislang, wie lineare Ubiquitin-Ketten von IKK wieder entfernt werden können. Dieses Rätsel kann jetzt als weitgehend gelöst betrachtet werden.

Bei Rückfragen: Professor Dr. Kay Hofmann,
0221-470-1701
kay.hofmann@uni-koeln.de

Internet:
http://www.cell.com/abstract/S0092-8674%2813%2900580-1

Gabriele Rutzen | idw
Weitere Informationen:
http://www.uni-koeln.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik