Protein-Export aus den Zellkraftwerken

Ein Modell des TOM-Kanals. Modifizierte Abbildung aus Bragoszewski et al.

Mitochondrien sind die Kraftwerke der Zellen und enthalten mehr als 1.000 Eiweißmoleküle, die wichtige Stoffwechselvorgänge im menschlichen Körper steuern. Ein Großteil dieser Proteine ist nötig, um die Energie aus Nahrungsmitteln in den Reaktionen der Zellatmung für den Körper nutzbar zu machen.

Ein Team von Prof. Dr. Agnieszka Chacinska vom International Institute of Molecular and Cell Biology in Warschau/Polen hat in Zusammenarbeit mit der Arbeitsgruppe des Freiburger Privatdozenten Dr. Nils Wiedemann entdeckt: Es gibt nicht nur einen Import von Proteinen in die Mitochondrien, sondern auch einen Export.

Um beispielsweise die Zellatmung zu regulieren, transportiert ein Kanal in der Außenmembran der Mitochondrien Proteine bei Bedarf wieder aus den Kraftwerken der Zelle hinaus, wie die Wissenschaftlerinnen und Wissenschaftler in der Online-Vorabveröffentlichung der Fachzeitschrift „Proceedings of the National Academy of Sciences“ (PNAS) gezeigt haben.

Die Mitochondrien des Menschen stellen nur 13 der Proteine, die sie enthalten, in ihrem Inneren her. 99 Prozent der Eiweißmoleküle gelangen aus dem Cytosol, dem Zellwasser, in die Mitochondrien. Die Translokase der äußeren Membran (TOM) transportiert die Proteine in den mitochondrialen Innenraum, wo sie durch andere Proteine an ihrem Arbeitsort gefaltet werden.

Kleine lösliche Proteine werden mit Schwefel-Schwefel-Bindungen stabil fixiert. Nachdem die Wissenschaftler diese Bindungen in den Mitochondrien lösten, fand ein Export der Eiweißmoleküle zurück in das Cytosol statt. Zudem ließen die Forscherinnen und Forscher veränderte Proteine, die keine Schwefel-Bindungen ausbilden konnten, in die Mitochondrien importieren.

Obwohl diese Proteine nachweislich in die Mitochondrien transportiert worden waren, fanden die Wissenschaftler sie anschließend nur im Cytosol. Um zu analysieren, ob die Proteine jeweils durch den TOM-Kanal zurückgelangen, blockierten die Forscher den Kanal. Dadurch verhinderten sie den Export der Proteine ins Cytosol.

Warum machen sich die Zellen die Arbeit, die Proteine erst in die Mitochondrien zu importieren, um sie danach wieder zu exportieren? „Dieser Mechanismus ermöglicht es der Zelle, sich schnell auf veränderte Bedingungen einzustellen“, sagt Wiedemann. Auf diese Weise kann der Körper die Zellatmung innerhalb weniger Minuten abschalten. Andernfalls würden sich in den Mitochondrien giftige Sauerstoffverbindungen bilden, die Zellschäden hervorrufen. Wiedemanns Fazit: „Wenn gerade niemand hereinkommt, kann der Eingang einfach als Ausgang benutzen werden.“ Wie im echten Leben gelte dies auch für die Zellkraftwerke.

Privatdozent Dr. Nils Wiedemann arbeitet am Institut für Biochemie und Molekularbiologie der Universität Freiburg und ist assoziiertes Mitglied des Exzellenzcluster BIOSS Centre for Biological Signalling Studies sowie Principal Investigator bei der Spemann Graduate School of Biology and Medicine der Albert-Ludwigs-Universität.

Originalpublikation:
Piotr Bragoszewski, Michal Wasilewski, Paulina Sakowska, Agnieszka Gornicka, Lena Böttinger, Jian Qiu, Nils Wiedemann, and Agnieszka Chacinska (2015). Retro-translocation of mitochondrial intermembrane space proteins. In: PNAS. Published online before print June 8, 2015, doi:10.1073/pnas.1504615112
www.pnas.org/content/early/2015/06/04/1504615112.abstract

Kontakt:
PD Dr. Nils Wiedemann
Institut für Biochemie und Molekularbiologie
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-5280
E-Mail: nils.wiedemann@biochemie.uni-freiburg.de

http://www.pr.uni-freiburg.de/pm/2015/pm.2015-06-15.85

Media Contact

Rudolf-Werner Dreier idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer