Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Primäre Zilie wird vererbt

11.10.2013
Zellen geben ihre Antenne für molekulare Signale bei der der Teilung an eine der beiden Tochterzellen weiter

Zellen besitzen kleine Antennen, mit denen sie Signale aufnehmen können. Die so genannte primäre Zilie ist so ein Sensor-Fortsatz, der in Wirbeltieren in fast allen Zellen vorkommt.


Eine neurale Stammzelle in den Stadien ihrer Zellteilung. In Magenta markiert ist die primäre Zilie zu sehen, das an eine der beiden Tochterzellen vererbt wird. Diese bleibt eine Stammzelle. © MPI f. molekulare Zellbiologie u. Genetik

Bisher ging man davon aus, dass die primäre Zilie im Vorfeld einer Zellteilung abgebaut wird, damit die mit der Zilie verankerten Zentrosomen frei werden, eine Teilungsspindel aufzubauen und das Erbgut zu gleichen Teilen auf die beiden Tochterzellen zu verteilen.

Forscher des Dresdner Max-Planck-Instituts für molekulare Zellbiologie und Genetik haben nun in Gehirn-Stammzellen und in kultivierten Zellen gezeigt, dass es ganz anders abläuft: Die Zilie bleibt während der Zellteilung mit einem der beiden Zentrosomen verbunden und wird an eine der entstehenden Tochterzellen vererbt.

Eigentlich war die Entdeckung, wie so oft in der Wissenschaft, ein reines Versehen: „Ich suchte nach etwas anderem, und dann sah ich plötzlich noch Reste der Zilie in der Zelle als Punkt“, erinnert sich Judith Paridaen vom Max-Planck-Institut für molekulare Zellbiologie.

Und das kurz vor einer Zellteilung – nach der gängigen Lehrmeinung müsste sich die Zellantenne aber schon längst abgebaut haben, um die Zellteilungsspindel ungehindert arbeiten zu lassen. Die junge Wissenschaftlerin in der Arbeitsgruppe von Wieland Huttner markierte die Zilie mit einem fluoreszierenden Protein und verfolgte es in allen Stadien der Zellteilung.

„Am Ende war immer noch Membran des Ciliums zu sehen, ich konnte beobachten, dass es an eine der beiden entstehenden Tochterzellen vererbt wurde“, so Paridaen.

Die Tochterzelle, die das Membranvesikel mit den Zilien-Resten erhält, kann dadurch Stammzellcharakter bekommen. Schon nach einer Stunde hat sich dann aus den Membranresten eine neue, funktionierende Zilie herausgeformt. „So hat diese Tochterzelle einen Vorsprung vor der anderen, oder anders gesagt: So entsteht eine asymmetrische Zellteilung“, erklärt Paridaen.

Für die Wissenschaftler sind die Erkenntnisse spektakulär: „Immerhin ist die Zellteilung ein fundamentaler biologischer Vorgang, und unsere Befunde bedeuten, dass dieser anders abläuft als bisher gedacht“, so Wieland Huttner, Direktor am Dresdner Max-Planck-Institut.

Ansprechpartner

Florian Frisch
Pressebeauftragter
Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden
Telefon: +49 351 210-2840
E-Mail: frisch@­mpi-cbg.de
Prof. Dr. Wieland B. Huttner
Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden
Telefon: +49 351 210-1500
Fax: +49 351 210-1600
E-Mail: huttner@­mpi-cbg.de
Originalpublikation
Judith Paridaen, Michaela Wilsch-Bräuninger, Wieland Huttner:
Asymmetric inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after cell division

Cell, 10. Oktober 2013

Florian Frisch | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7559879/primaer_cilium_zellteilung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher sehen Biomolekülen bei der Arbeit zu
05.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten