Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pilzköpfe im Vakuum

08.09.2010
Kieler Wissenschaftler erforschen biologisch inspirierte Haftstrukturen

In der aktuellen online-Ausgabe des renommierten Royal Society Journals Interface vergleichen Kieler Wissenschaftler die Haftkraft von biologisch inspirierten Haftfolien unter Atmosphärendruck und im Vakuum. Die Ergebnisse dieser Grundlagenforschung können dazu beitragen, neuartige Materialien zum Beispiel für die Raumfahrttechnik, Medizin oder Meerestechnik zu entwickeln.

Ob vertikal am Fenster hochklettern oder an der Unterseite eines Blattes kleben – von der Tierwelt kann der Mensch in vielerlei Hinsicht etwas lernen. Mit den Fortbewegungsmethoden und speziell den Hafteigenschaften von männlichen Blattkäfern haben sich der angehende Doktorand und Autor der Publikation Lars Heepe und Professor Stanislav Gorb, beide Institut für Spezielle Zoologie an der Christian-Albrechts-Universität zu Kiel (CAU), beschäftigt. Gorb: „Die Hafteigenschaften von Tieren bieten sowohl aus wissenschaftlicher als auch aus technologischer Sicht einen großen Inspirationsreichtum. Seit mehr als zehn Jahren arbeiten Biologen, Physiker, Chemiker und Ingenieure auf dem Gebiet der biologischen und biologisch-inspirierten Haftung zusammen, um die Form und Struktur von tierischen Gliedmaßen mit herausragenden Haftungseigenschaften zu untersuchen.“ Diese morphologischen Analysen erlauben einen Blick auf Tausende bis Millionen von kleinen Härchen im Mikro- bis Nanometer Bereich, mit deren Hilfe ein intimer Kontakt zum Untergrund aufgebaut werden kann. (Zur Erklärung: ein Mikrometer entspricht einem Tausendstel Millimeter; ein Nanometer einem Millionstel Millimeter) Dank dieser vergleichsweise schwachen Bindungskraft (genannt Van-der-Waals Kraft) ist es den Tieren möglich, zumindest theoretisch bis zu einem Vielfachen ihres eigenen Körpergewichtes zu halten. Auch Feuchtigkeit kann dazu beitragen, dass diese Härchen besseren Halt sogar an glatten Glasflächen bieten.

Detailliertere vergleichende Studien der funktionellen Morphologie dieser Tiere zeigten überdies Unterschiede in den Kontaktgeometrien, also den Enden der Härchen. Als besonders haftstark stellte sich der Pilzkopf heraus. Dieser findet sich beispielsweise unter den Füßen männlicher Blattkäfer. Das internationale Forscherteam (Kooperation mit Dr. Michael Varenberg, Israel) nahm diese Erkenntnisse zum Anlass, um gemeinsam mit einem Industriepartner die Haftstrukturen künstlich nachzubauen und weitere Untersuchungen der beteiligten Haftmechanismen an diesem Modellsystem durchzuführen. „Die biologisch-inspirierte, mikrostrukturierte Polymerfolie haftet aufgrund ihrer pilzkopfförmigen Geometrie etwa doppelt so gut wie eine flache, unstrukturierte Kontrollprobe desselben Materials. Unter Wasser ist der Effekt sogar noch ausgeprägter“, erklärt Heepe. Dies lege die Vermutung nahe, die künstlichen Strukturen würden sich wie einfache Saugnäpfe verhalten.

Um dieser Hypothese auf den Grund zu gehen führten die Forscher Experimente im Vakuum durch. Da ein Saugnapf seine Kraft durch die Druckdifferenz generiert, die innerhalb und außerhalb des Saugnapfes herrscht, kann es innerhalb eines Vakuums zu keiner Saugkraft kommen. Bei dem Vergleich der Haftkraft unter Atmosphärendruck und im Vakuum wurde deshalb die strukturierte Polymerfolie gegen eine glatte Glasfläche gedrückt und die Kraft gemessen, um die Folie vom Glas abzuziehen. Dabei hat sich gezeigt, dass die Pilzkopf-Strukturen unter gewissen Umständen einen Saugeffekt aufweisen können, allerdings beträgt dieser maximal zehn Prozent der gesamten Haftkraft. Heepe: „Damit ist der Saugeffekt nicht ursächlich für die Haftung der Polymerfolie verantwortlich. Daraus schließen wir, dass für die erhöhte Haftung dieser klebstofffreien, wiederverwendbaren Folie eine Kombination der biologisch-inspirierten Geometrie und der Van-der-Waals Kräfte verantwortlich ist.“

Link zum Royal Society Journal Interface:
http://rsif.royalsocietypublishing.org
Kontakt:
Prof. Stanislav N. Gorb
Telefon: 0431 880-4513
E-Mail: sgorb@zoologie.uni-kiel.de
Lars Heepe
Telefon: 0431 880-4504
E-Mail: lheepe@zoologie.uni-kiel.de

Dr. Anke Feiler-Kramer | idw
Weitere Informationen:
http://www.uni-kiel.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie