Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Können Pflanzen sich an Trockenzeiten erinnern?

18.05.2011
Vergleichende Untersuchungen an Wiesengräsern

Können Pflanzen sich an extreme Trockenheit erinnern und sich daher besser schützen, wenn sie erneut unter Wassermangel leiden? Sind sie womöglich noch in derselben Vegetationsperiode in der Lage, aus der Erinnerung an extreme Trockenheit zu lernen? Auf ein solches kurzzeitiges Erinnerungs- und Lernvermögen bei einigen Pflanzenarten weisen neue Forschungsergebnisse hin, die in der aktuellen Ausgabe der Zeitschrift „Environmental and Experimental Botany“ vorgestellt werden. Zu den Autoren gehören Anke Jentsch, seit März 2011 Professorin für Störungsökologie an der Universität Bayreuth, und ihre Doktorandin Julia Walter am Helmholtz-Zentrum für Umweltforschung (UFZ) in Leipzig.

Simulationen extremer Trockenheit
im Ökologisch-Botanischen Garten der Universität Bayreuth
Trockenzeiten werden infolge des weltweiten Klimawandels auch in Mitteleuropa künftig häufiger eintreten. Sie beeinträchtigen die Pflanzenwelt und verringern die Ernteerträge. Wie schnell können Pflanzen auf solche sich wiederholenden Extremereignisse reagieren? Das Forschungsteam in Bayreuth und Leipzig ist dieser Frage am Beispiel des Gewöhnlichen Glatthafers nachgegangen, eines in Europa weit verbreiteten Wiesengrases, das eine Höhe zwischen 50 und 150 Zentimeter erreicht. Gräser, die im Frühsommer – also zu Beginn einer Vegetationsperiode – einen extremen Wassermangel überlebt haben, wurden daraufhin untersucht, ob sie Schutz- und Anpassungsreaktionen zeigen, wenn sie im Spätsommer desselben Jahres erneut einer Trockenperiode ausgesetzt sind.

Dabei richtete sich das Interesse des Forschungsteams insbesondere auf die Frage, inwieweit diese Reaktionen mit „Erinnerungen“ an die frühere Trockenperiode zu erklären sind. Für derartige Forschungen bieten die Versuchsflächen im Ökologisch-Botanischen Garten der Universität Bayreuth besonders günstige Voraussetzungen. Sie werden in zahlreichen Projekten dafür genutzt, extreme Wetterereignisse wie Dürre, Starkregen und Spätfrost oder Klimatrends wie Erwärmung und Winterregen zu simulieren. Dadurch lassen sich im Hinblick auf künftig zu erwartende Klimaveränderungen deren voraussichtliche Folgen für die Pflanzenwelt beobachten. Daher haben Anke Jentsch und ihr Team im April 2007 junge Glatthaferpflanzen aus Deutschland, Polen und Ungarn in röhrenförmige Behälter eingesetzt und unter natürlichen Umweltbedingungen aufgezogen. Einigen dieser Pflanzen haben sie dann im Juni 2009 jede Wasserzufuhr vorenthalten – und zwar über einen Zeitraum von 16 aufeinander folgenden Tagen. Während dieser künstlichen Trockenperiode wurde jedoch eine Vergleichsgruppe von Glatthaferpflanzen konstant bewässert. In den Folgemonaten erhielten alle Gräser dann wieder die gleiche intensive und regelmäßige Bewässerung. Im Juli wurden sie beschnitten, der weitaus größte Teil ihrer Biomasse wurde dabei abgeerntet. Ein wichtiger Aspekt: Die nach der Ernte wieder austreibenden Blätter waren in allen Fällen neu gebildete pflanzliche Organe, die selbst noch keine Dürreerfahrungen gemacht haben. Im September 2009 begann eine erneute künstliche Trockenperiode: Diesmal mussten beide Gruppen 16 Tage lang ohne Wasser auskommen.

Anhaltspunkte für ein „Erinnerungsvermögen“ von Pflanzen
in Bezug auf extreme Klimaereignisse
Der Vergleich zwischen den beiden Pflanzengruppen am Ende der zweiten Trockenperiode förderte einige signifikante Abweichungen zutage. Bei den Gräsern, die bereits im Juni eine Trockenperiode überstanden hatten, war der Anteil der lebenden Biomasse an der Gesamtheit der Biomasse um 7 % höher als bei den Gräsern, die im September erstmalig einer Trockenperiode ausgesetzt waren. Dies legt den Schluss nahe, dass die der Trockenheit ausgesetzten Gräser während der darauf folgenden Sommermonate Schutzreaktionen ausgebildet haben, die bei einem wiederholten Wassermangel dem Abbau lebender Biomasse entgegenwirken.

Analysen bezüglich der Photosynthese, also der Umwandlung von Lichtenergie in chemische Energie, bestätigen diese Annahme. Denn auch in dieser Hinsicht lassen sich deutliche Unterschiede zwischen beiden Gruppen feststellen. In den Gräsern, die im September zum zweiten Mal eine Trockenperiode erleben, laufen einige photosynthetische Prozesse weniger intensiv und nicht mit größtmöglicher Effizienz ab. Offenbar führt die Erfahrung früheren Wassermangels dazu, dass Pflanzen deutlich weniger Lichtenergie aufnehmen und verwerten als die noch unerfahrenen Pflanzen der Vergleichsgruppe.

Welche biochemischen Prozesse diesen Schutz- und Abwehrreaktionen zugrunde liegen, liegt derzeit noch im Dunkeln. „Fragen nach der physiologischen oder molekularen Basis der von uns beobachteten Verhaltensweisen lagen zunächst außerhalb unserer Untersuchungen“, erläutert Anke Jentsch. „Doch jetzt entstehen spannende weiterführende Forschungsfragen, nachdem wir Anhaltspunkte dafür gefunden haben, dass Pflanzen so etwas wie ein Erinnerungsvermögen in Bezug auf extreme Klimaereignisse besitzen. Schon wenige Wochen später – noch innerhalb derselben Vegetationsperiode – sind sie imstande, in neu gebildeten Organen Schutzreaktionen auszubilden. Diese Zusammen hänge wollen wir seitens der ökologischen Forschung an der Universität Bayreuth weiter aufklären.“

Schutzreaktionen auf kurzzeitige Dürreperioden: nicht immer nur von Vorteil

Die an den Gräsern beobachteten Reaktionen, die die Folgen extremer Trockenheit abschwächen könnten, sind übrigens nicht uneingeschränkt positiv zu bewerten. „Der verbesserte Lichtschutz und die herabgesetzten Photosynthese-Leistungen, die wir bei wiederholter Trockenheit nachweisen konnten, erleichtern den Gräsern zwar das Überleben während relativ kurzer Perioden des Wassermangels,“ erklärt Julia Walter, die jetzt ihre Promotion an der Universität Bayreuth fortsetzt. „Bei länger anhaltenden und häufigeren Hitze- und Dürreperioden, mit denen wir infolge des globalen Klimawandels durchaus zu rechnen haben, können sich derartige Schutzreaktionen jedoch auch nachteilig auswirken. Sie können, um ein Beispiel zu nennen, insbesondere den Biomassezuwachs der Pflanzen herabsetzen.“

Veröffentlichung:

Julia Walter, Laura Nagy, Roman Hein, Uwe Rascher, Carl Beierkuhnlein, Evelin Willnerd,
Anke Jentsch,
Do plants remember drought? Hints towards a drought-memory in grasses,
in: Environmental and Experimental Botany, 71 (2011), pp. 34–40.
DOI-Bookmark (Link): 10.1016/j.envexpbot.2010.10.020
Ansprechpartner für weitere Informationen:
Prof. Dr. Anke Jentsch
Universität Bayreuth
95440 Bayreuth
Tel.: +49 (0)921 55-2290
E-Mail: anke.jentsch@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie