Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzen im Süden machen länger Siesta

11.01.2017

Forscher des Gregor Mendel Instituts: Ein einziges Gen bestimmt den besten Zeitpunkt, wann Samen auskeimen und dadurch überleben können.

Eines der Hauptziele moderner Genetik ist es zu verstehen, wie die Gene eines Individuums in ihren Phänotyp übersetzt werden - also wie ein Individuum aussieht, sich entwickelt und verhält.


Arabidosis thaliana in Südschweden

GMI / Kerdaffrec


Dr. Magnus Nordborg, wissenschaftlicher Direktor des GMI und sein Team mit Envel Kerdaffrek

floorfour / Huttar

Als Mendel als Erster damit begonnen hat Pflanzen zu erforschen und bei seinen Versuchen Phänomene entdeckt hat, die wir heute Genetik nennen, hat er einfache Merkmale ausgewählt, die klare Vererbungsmuster aufgewiesen haben: Erbsen waren entweder glatt oder runzelig, gelb oder grün. Mittlerweile wissen wir, dass diese Eigenschaften durch die Unterschiede in einzelnen Genen kodiert sind.

Die meisten Merkmale eines Individuums funktionieren aber nicht auf diese Weise: Sie sind durch mehrere Gene festgelegt und darüber hinaus stark von der Umwelt beeinflusst. Ein klassisches Beispiel ist die Größe: Sie ist stark durch Umweltfaktoren wie Ernährung beeinflusst. Aktuelle Studien haben gezeigt, dass die Größe eines Individuums durch tausende von Genen reguliert wird.

Jedes dieser Gene hat dabei nur einen kleinen Effekt. Viele menschliche Eigenschaften – darunter die meisten Krankheiten – scheinen auch auf diese Art genetisch komplex zu sein. Anders scheint das aber bei jenen Merkmalen zu sein, die einen evolutionären Vorteil beisteuern: Sie dürften nur von einem oder sehr wenigen Genen mit großen Effekten gesteuert werden. Dieser Unterschied ist nicht nur für die Genetik wichtig, sondern auch für die praktische Anwendung in Landwirtschaft und Medizin.

Publikation im Journal eLife

In einer im Dezember im renommierten Journal eLife publizierten Arbeit hat ein Forscherteam unter der Leitung des PhD-Studenten Envel Kerdaffrec die genetischen Grundlagen der Keimruhe (Seed dormancy) bei der Modellpflanze Arabidopsis thaliana (Ackerschmalwand) untersucht. Kerdaffrec arbeitet am Labor von Magnus Nordborg am Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI) der Österreichischen Akademie der Wissenschaften, subventioniert durch den Europäischen Forschungsrat.

Die Keimruhe ist ein wichtiges Merkmal, das evolutionäre Vorteile bietet: Sie trägt dazu bei, den besten Zeitpunkt zu finden, wann der Samen auskeimen soll. Dazu haben die Forscher eine Pflanzenpopulation verwendet, die an verschiedenen Orten mit unterschiedlichen Umweltbedingungen in Nord- und Südschweden gesammelt wurde. Im Labor keimen Samen aus Nordschweden rasch, was auf eine Anpassung an die kurze Wachstumssaison im Norden schließen lässt. Samen aus Südschweden hingegen können für lange Zeit ruhen - wahrscheinlich eine Anpassung an die trockenen Sommer im Süden.

Da das Genom dieser Pflanzen bekannt war, konnten die Forscher durch eine genomweite Assoziationsstudie bestimmen, welche Gene kontrollieren, wie lange die Samen in der Ruhephase bleiben. Überraschenderweise fanden sie den Unterschied in einem einzigen Gen, genannt DOG1 (DELAY OF GERMINATION1). Dieses Gen ist für die meisten Varianten zuständig - was bedeutet, dass die Unterschiede in diesem Merkmal von einem einzigen Gen mit großem Effekt kontrolliert werden.

Zeitpunkt des Auskeimens bestimmt Überlebensfähigkeit

Dann testeten sie, wie die unterschiedlichen Versionen dieses Gens sich auf die Lebensfähigkeit der Pflanzen in der Natur auswirken. Im Frühsommer pflanzten sie eine gemischte Population der Pflanzen mit unterschiedlichen Varianten von DOG1 an einem Ort in Südschweden. Danach stellten sie fest, welche Pflanzen den Sommer und Herbst überlebten. Bemerkenswerterweise waren Pflanzen mit einer DOG1-Variante, die frühes Keimen hervorruft, 50 Prozent weniger überlebensfähig als diejenigen, bei denen das Auskeimen verzögert wird. Das legt den Schluss nahe, dass die Ermittlung des Zeitpunkts des Auskeimens eine der wichtigsten Eigenschaften ist, die darüber bestimmt, ob eine Pflanze überlebt. Die natürliche Selektion für dieses Merkmal dürfte durch verschiedene Versionen von DOG1 entstanden sein.

Magnus Nordborg: „Ich glaube, es wird sich zeigen, dass viele die Anpassung betreffende Merkmale eine ähnliche genetische Architektur aufweisen: Eines oder nur wenige Gene erklären den Großteil der Merkmalsunterschiede. Zu verstehen warum das so ist, wird für das grundlegende Verständnis der Genetik ebenso wichtig sein wie für die Anwendung in der Medizin und in der Landwirtschaft.“

Für weitere Informationen wenden Sie sich bitte an:

floorfour LifeScience PR


www.floorfour.at
Mehrdokht Tesar
tesar@floorfour.at
+43-699-171 31 621
Thomas Kvicala
kvicala@floorfour.at
+43-660-444 00 47

Weitere Informationen:

Links zur Publikationen:
https://elifesciences.org/content/5/e22502
DOI: http://dx.doi.org/10.7554/eLife.22502

Mehrdokht Tesar | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics