Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzen erkennen ähnlich wie Säugetiere bakterielles Endotoxin

03.03.2015

Wichtiger Mechanismus im Immunsystem von Pflanzen entschlüsselt

Pflanzen besitzen, wie auch Menschen und Tiere, eine natürliche Immunität, die der Abwehr von Krankheitserregern dient. Molekulare Strukturen der Erreger, die nicht in Menschen, Tieren oder Pflanzen vorkommen, dienen dabei als Erkennungsmerkmal und Auslöser der Immunantwort.


Die Wissenschaftler untersuchten die Immunmechanismen gegen Lipopolysaccharid an der Modellpflanze Arabidopsis thaliana (Ackerschmalwand). (Foto: Stefanie Ranf / TUM)

Lipopolysaccharid (Endotoxin) aus der Außenhülle bestimmter Bakterien ist eine solche Substanz. Ein Wissenschaftler-Team von der Technischen Universität München (TUM), dem Leibniz-Institut für Pflanzenbiochemie in Halle (IPB) und dem Leibniz-Zentrum für Medizin und Biowissenschaften in Borstel hat nun den ersten Immunsensor für Lipopolysaccharid in Pflanzen beschrieben.

Nicht nur Menschen und Tiere, sondern auch Kulturpflanzen wie beispielsweise Tomate, Kohlgewächse und Reis werden von Bakterien befallen. Das verursacht weltweit wirtschaftlich bedeutende Ernteverluste. Pflanzen sind jedoch nicht wehrlos, denn sie besitzen ein natürliches Immunsystem.

Verschiedene Immunsensoren erkennen dabei Substanzen, die nur in Mikroorgansimen vorkommen und lösen Abwehrreaktionen aus. In Säugetieren erkennt der „Toll-Like Receptor 4“ beispielsweise Lipopolysaccharid, das auch als Endotoxin bezeichnet wird und der Hauptbestandteil der Außenhülle von vielen bakteriellen Krankheitserregern ist.

Da auch Pflanzen auf Lipopolysaccharid mit einer Immunantwort reagieren, wurde angenommen, dass sie auch einen Immunsensor für diese Substanz besitzen. Die Natur dieses Sensors war aber bis jetzt unbekannt. Ein Team aus Wissenschaftlern verschiedener Disziplinen hat jetzt den Erkennungsmechanismus für bakterielles Lipopolysaccharid in der Modellpflanze Arabidopsis thaliana (Ackerschmalwand) entschlüsselt.

Die Suche nach dem pflanzlichen Lipopolysaccharid-Sensor war schwierig, da es sich bei dem Endotoxin nicht um ein definiertes Molekül, sondern um ein komplexes Gemisch von ähnlichen Lipopolysaccharid-Molekülen handelt. Es lässt sich daher bisher auch nicht synthetisch für Versuche herstellen.

Die Analyse, Reinigung und chemische Auftrennung der Bestandteile des Lipopolysaccharids am Forschungszentrum Borstel war deshalb eine wichtige Voraussetzung für die genetischen und biochemischen Tests an Pflanzen an der TUM und am IPB.

Protein LORE hilft Pflanzen bei Abwehr von Bakterien

Die Wissenschaftler konnten jetzt entschlüsseln, mit welchem Sensor Arabidopsis-Pflanzen Lipopolysaccharid erkennen. Sie zeigten mit ihren Experimenten, dass das von ihnen entdeckte Protein LORE („LipoOligosaccharide-specific Reduced Elicitation“) diese Aufgabe übernimmt und die nachfolgende Immunabwehr einleitet. LORE unterscheidet sich in seinem Aufbau aber von tierischen Lipopolysaccharid-Sensoren. Die Evolution hat dieses Prinzip der Erkennung also zweimal – in Tieren und Pflanzen - unabhängig voneinander hervorgebracht.

Die Wissenschaftler konnten ebenfalls zeigen, dass trotz des unterschiedlichen Aufbaus der Sensoren sowohl Tiere als auch Pflanzen denselben Bestandteil des Lipopolysaccharid, das so genannte Lipid A, erkennen. Lipid A kann bei Menschen und Säugetieren zu einer überschießenden Immunantwort mit lebensbedrohlichen Komplikationen, der Sepsis und dem septischen Schock, führen.

Interessanterweise weisen nicht alle Pflanzen den Immunsensor LORE auf, sondern ausschließlich Kreuzblütler. Zu dieser Pflanzenfamilie gehören neben Arabidopsis wichtige Kulturpflanzen wie Kohlgewächse, Senf und Raps. Die Wissenschaftler fanden aber weiterhin heraus, dass der Sensor seine Funktion behält, wenn man ihn in andere Pflanzen überträgt. Somit könnte er als Werkzeug zur Erforschung und Erzeugung von Pflanzen mit verbesserter Resistenz gegen bakterielle Erreger dienen, meinen die Forscher.

Die Arbeiten wurden durch den Sonderforschungsbereich 924 sowieso das Schwerpunktprogramm 1212 der Deutschen Forschungsgemeinschaft unterstützt.

Originalpublikation
Stefanie Ranf, Nicolas Gisch, Milena Schäffer, Tina Illig, Lore Westphal, Yuriy A. Knirel, Patricia M. Sánchez-Carballo, Ulrich Zähringer, Ralph Hückelhoven, Justin Lee & Dierk Scheel, A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana, Nature Immunology.
DOI: 10.1038/ni.3124

Kontakt:
Dr. Stefanie Ranf
Technische Universität München
Lehrstuhl für Phytopathologie
Tel.: +49 (0)8161 715626
ranf@wzw.tum.de

Prof. Dr. Dierk Scheel
Leibniz-Institut für Pflanzenbiochemie (IPB) in Halle
Tel.: +49 (0)345 5582 1400
dscheel@ipb-halle.de

Die Technische Universität München (TUM) ist mit rund 500 Professorinnen und Professoren, 10.000 Mitarbeiterinnen und Mitarbeitern und mehr als 37.000 Studierenden eine der forschungsstärksten Technischen Universitäten Europas. Ihre Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften und Medizin, ergänzt um die Wirtschafts- und Bildungswissenschaften. Die TUM handelt als unternehmerische Universität, die Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit einem Campus in Singapur sowie Niederlassungen in Brüssel, Kairo, Mumbai, Peking und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinder wie Rudolf Diesel und Carl von Linde geforscht. 2006 und 2012 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands. www.tum.de

Media Relations | Technische Universität München (TUM)

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics