Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Per Knopfdruck zur Erbgut-Entschlüsselung: Genominformationen mit Stoffwechselmodellen verknüpft

24.04.2014

Augenfarbe, Haarfarbe, Blütenfarbe, Blattform, Stressresistenz, Stoffwechsel – das Genom ist Träger aller Erbanlagen von Mensch, Pflanzen, Tieren und Mikroorganismen.

Der Systembiologe Wolfram Weckwerth und sein Team veröffentlichten im April neue Erkenntnisse zur Erforschung des Erbguts in der renommierten Fachzeitschrift "PLOS One": Anhand der Acker-Schmalwand analysierte Weckwerth diverse Stoffwechselmuster und das Erbgut der Pflanze und untersuchte die Kausalität von Genotyp und Phenotyp. Quasi per Knopfdruck und mithilfe von "Big Data" verknüpften Weckwerth und sein Team so tausende von Stoffwechselwegen mit genomischer und metabolomischer Information.


Acker-Schmalwand (Arabidopsis thaliana)

(Copyright: Wolfram Weckwerth)


Genomisches metabolisches Netzwerk von Arabidopsis thaliana

(Copyright: Wolfram Weckwerth)

Die vollständige funktionale Aufklärung und Interpretation eines ganzen Genoms eines Organismus ist der "Heilige Gral" in der Biologie der nächsten Dekaden und stellt eine Herausforderung dar, die die der Genomsequenzierung des Menschen oder der Pflanze vor rund zehn Jahren bei weitem übertrifft.

"Die Dynamik von Lebewesen, wie z.B. ihren Stoffwechsel und ihre Entwicklung, kann man nicht einfach aus dem Erbgut ablesen", so Wolfram Weckwerth vom Department für Ökogenomik und Systembiologie der Universität Wien. Um diese Dynamik auf molekularer Ebene zu verstehen, mit der Genominformation zu verknüpfen und eine funktionale Interpretation des Genoms zu ermöglichen, werden sogenannte "Big Data" (genomweite molekulare Analysen) generiert.

Eine der Schlüsseltechnologien für die funktionale Interpretation von Genomen ist "Metabolomics". Diese Technologie befasst sich mit der möglichst umfangreichen Analyse der Stoffwechselprodukte (Metabolite) eines Organismus. Da die Zusammensetzung sowie die jeweiligen Metabolitgehalte sehr stark variieren können und deutlich von den jeweiligen Entwicklungszuständen, Stresszuständen und Umweltbedingungen des untersuchten Organismus abhängen, kann sich für ein und dieselbe Genom-kodierte Information eine große Variation von Stoffwechselprozessen ergeben und Aufschluss über Genfunktionen geben.

Eine einfache intuitive Interpretation dieser molekularen Daten ist allerdings nicht mehr möglich. Man benötigt biomathematische Modelle und Konzepte, um eine Synthese der Genominformation und der molekularen Dynamik eines Organismus durchzuführen. "Wir generieren quasi riesige 'Hypothesenmaschinen', die mit aussagekräftigen kausalen Modellen verknüpft werden müssen", erklärt der Biologe.

Modellorganismus "Arabidopsis thaliana"

Das Team von Wolfram Weckwerth schaffte es, molekulare Hochdurchsatzanalysen direkt mit genomischer Information zu verknüpfen. In einem Metabolomics-Experiment wurden Acker-Schmalwand-Pflanzen (Arabidopsis thaliana) unterschiedlichen Umweltbedingungen ausgesetzt und die gewonnenen Daten mit jenen der Genominformation verglichen.

"Wir konnten diese dynamischen Informationen mit den statischen Informationen einer Genomsequenz direkt verknüpfen und daraus ableiten, welche biochemischen Reaktionen als Antwort auf veränderte Umweltbedingungen aktiviert werden", beschreibt der Wissenschafter. "Diese Information wurde aus einem Metabolit-Netzwerk bestehend aus ca. 2.500 Einzelreaktionen abgeleitet und bildete damit einen kausalen Zusammenhang des experimentell bestimmten Stoffwechselmusters ab", erklärt der Erstautor der Studie, Thomas Nägele.

Dieser neue biomathematische Ansatz macht es möglich, zu ermitteln, welche der biochemischen Reaktionen Einfluss auf dieses Stoffwechselmuster besitzt. "Das erlaubt nun eine direkte Vorhersage solcher Schlüsselreaktionen und stellt einen Meilenstein in der funktionellen Analyse experimenteller Hochdurchsatzdaten dar", erklärt Weckwerth. Die neuartige Methode ist auf alle Organismen anwendbar.

Publikation in "PLOS One":
Thomas Nägele, Andrea Mair, Xiaoliang Sun, Lena Fragner, Markus Teige, Wolfram Weckwerth: Solving the Differential Biochemical Jacobian from Metabolomics Covariance Data. In: PLoS ONE 9(4): e92299. doi:10.1371/journal.pone.0092299
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0092299

Wissenschaftlicher Kontakt
Univ.-Prof. Dr. Wolfram Weckwerth
Department für Ökogenomik und Systembiologie
Universität Wien
1090 Wien, Althanstraße 14 (UZA I)
T +43-1-4277-765 50
M +43-664-60277-765 50
wolfram.weckwerth@univie.ac.at

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit auch die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. 1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum. www.univie.ac.at

Veronika Schallhart | Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen
27.06.2017 | Johannes Gutenberg-Universität Mainz

nachricht Glykane als Biomarker für Krebs?
27.06.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie