Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ozon-Fänger

13.07.2011
Poröses Eisenoxid-Material entfernt Ozon effektiv aus Luft

Wenn es im Sommer heiß ist und der Autoverkehr rollt, könnte es wieder Ozonalarm und Fahrverbote in Deutschland geben. Ozon entsteht, wenn Stickoxide aus Abgasen unter Einwirkung von UV-Strahlung ein Sauerstoffatom freisetzen, das sich mit einem Sauerstoffmolekül (O2) zu einem Ozonmolekül (O3) verbindet.


Modell von gebundenem Ozon an Zwei-Banden-Ferrihydrit. (c) Wiley-VCH

Auch Geräte, wie Fotokopierer und Laserdrucker, setzen das gesundheitsschädliche Gas frei. Ein Team um Thomas Mathew und Kenichirou Suzuki von Toyota Central R&D Labs (Japan) stellt in der Zeitschrift Angewandte Chemie nun ein eisenoxidhaltiges Material vor, das den Weg zu einer neuen Generation von Ozonfiltern eröffnen könnte.

Ozon (O3) ist ein gefährlicher Luftschadstoff, der Atemwege und Augen reizt und Kopfschmerzen verursacht. Zudem beeinträchtigt er das Pflanzenwachstum und soll beim Waldsterben eine Rolle spielen. Der typische „Ozongeruch“ älterer Fotokopierer und Laserdrucker stammt nicht vom Ozon selber, sondern von Reaktionsprodukten. Die meisten Geräte sind inzwischen mit Filtern ausgestattet, die Ozon umwandeln. In Flugzeugen sind Ozonfilter unabdingbar, denn Ozon kommt in Flughöhe in hoher Konzentration vor und gelangt ins Kabineninnere.

Bisherige Materialien zur Eliminierung von Ozon haben eine Reihe von Nachteilen, manche benötigen organische Additive, andere kommen nicht ohne teure Metalle aus, einige sind alles andere als umweltfreundlich und die meisten nicht flexibel genug für einen breiten Einsatz in verschiedenen Anwendungen. Das japanische Team berichtet nun von einem neuen vielversprechenden Ozon-Fänger: Zwei-Banden-Ferrihydrit, einem Mineral aus Eisen, Sauerstoff und Wasser. Die Forscher stellen es mithilfe verschiedener Zusatzstoffe und Lösemittel in einem Selbstorganisationsprozess her. Das hochporöse Material besteht aus sehr kleinen aggregierten Nanokristallen und verdankt seinen Namen der Röntgenbeugung, einer Analysenmethode zur Strukturbestimmung, bei der es zwei Banden zeigt.

Warum ist Zwei-Banden-Ferrihydrit ein so besonders guter Ozon-Fänger? Zunächst hat das Material dank der Poren und seines Aufbaus aus Nanopartikeln eine sehr hohe innere Oberfläche. Im Vergleich zu anderen eisenoxidischen Mineralen zeigt es einen besonders hohen Anteil an ungesättigten, reaktiven Eisenzentren auf seiner Oberfläche. Sie haben weniger Sauerstoffatome in ihrer nächsten Nähe als die Eisenatome im Innern des Minerals. Solche isolierten Eisenoxid-Einheiten absorbieren Ozon besonders gut. An das Eisen gebunden, spaltet sich das Ozon in ein Sauerstoffmolekül und ein hochreaktives Sauerstoffatom, das mit einem zweiten Sauerstoffatom zu O2 reagieren kann.

Das neue Material könnte herkömmliche Ozonfilter in Geräten und Flugzeugen ersetzen. Ein weiteres Anwendungsfeld wären Belüftungssysteme und Klimaanlagen für Häuser und Büros. Es könnte auch das nicht abreagierte Ozon bei Ozon-Verfahren abfangen, die in der Wasserreinigung und bei der Beseitigung von unangenehmen Gerüchen, z.B. Rauchgeruch aus Fahrzeuginnenräumen, üblich sind.

Angewandte Chemie: Presseinfo 27/2011

Autor: Thomas Mathew, Toyota Central R&D Labs, Nagakute-Cho (Japan), mailto:thomasm74@gmail.com

Angewandte Chemie 2011, 123, No. 32, Permalink to the article: http://dx.doi.org/10.1002/ange.201102007

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://presse.angewandte.de/
http://dx.doi.org/10.1002/ange.201102007

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics