Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Oxidativer Stress: Alternative Zuckerverwertung sichert das Überleben der Zelle

15.01.2015

Oxidativer Stress in der Zelle blockiert den normalen Zuckerstoffwechsel. Wissenschaftler im Deutschen Krebsforschungszentrum (DKFZ) und im Heidelberger Institut für Theoretische Studien (HITS) haben nun herausgefunden: Die lange bekannte Unterbrechung des normalen Zuckerstoffwechsels unter Stressbedingungen ist keine unkontrollierte Störung, sondern ganz im Gegenteil, wichtig für das Überleben der Zellen. Dafür sorgt ein hochspezifischer Mechanismus, der sich in der Evolution früh herausbildete und sogar schon bei Bakterien nachweisbar ist. Krebszellen profitieren möglicherweise besonders davon.

Traubenzucker liefert Energie und Bausteine für die Zellen in unserem Körper. Wissenschaftler wissen schon seit langem, dass unter oxidativem Stress, wie er etwa bei Entzündungen oder Vergiftungen entstehen kann, der normale Abbau des Traubenzuckers ins Stocken gerät.

Denn eines der zentralen Enzyme beim Zuckerabbau, GAPDH (Glycerinaldehyd-3-phosphat-Dehydrogenase), hat eine besondere Eigenschaft: Es wird ungewöhnlich schnell und effizient durch Wasserstoffperoxid (H2O2) oxidiert und dabei inaktiviert. Immunzellen setzten bei chronischen entzündlichen Reaktionen dauerhaft H2O2 frei – ein charakteristisches Kennzeichen für den oxidativen Stress.

Doch warum wird GAPDH durch H2O2 so viel leichter und schneller abgeschaltet als andere Enzyme? Und was bedeutet die Unterbrechung des Zuckerstoffwechsels für die Zelle? „Bislang dachte man, dass die oxidative Inaktivierung von GAPDH nur die schicksalhafte Begleiterscheinung seiner allgemein hohen Reaktivität ist“, sagt Privatdozent Dr. Tobias Dick vom Deutschen Krebsforschungszentrum.

„Denn damit GAPDH effizient Zucker abbauen kann, hat das Enzym ein hochreaktives Zentrum. Dieses reagiert unspezifisch mit H2O2 und hemmt sich dabei selbst“, beschreibt der Wissenschaftler den gängigen Erklärungsversuch. Will die Zelle aus Zucker effizient Energie gewinnen, muss sie also zwangsläufig in Kauf nehmen, dass der Zuckerstoffwechsel bei oxidativem Stress gestört wird – so vermutete man bislang.

Das Gegenteil ist der Fall, wie nun die Arbeitsgruppe um Tobias Dick zusammen mit dem Team um Professor Frauke Gräter vom Heidelberger Institut für Theoretische Studien (HITS) und Kollegen vom Nationalen Institut für Onkologie in Budapest zeigen konnten: Die Wissenschaftler entdeckten einen bisher unbekannten Mechanismus, der die Reaktion von GAPDH mit H2O2 ganz spezifisch herbeiführt.

Wie die Forscher mithilfe von Laborexperimenten und Computersimulationen herausfanden, ist die hohe Empfindlichkeit von GAPDH für H2O2, entgegen allen bisherigen Annahmen, kein Nebeneffekt der allgemeinen GAPDH-Reaktivität. Stattdessen beschleunigt GAPDH seine eigene oxidative Hemmung, spezifisch und unabhängig von seiner Aktivität im Zuckerstoffwechsel.

„Wir waren überrascht festzustellen, dass sich dieser spezielle Mechanismus in der GAPDH von fast allen Lebewesen findet, von Bakterien bis zum Menschen. Alles deutet darauf hin, dass er für das Überleben unter Stressbedingungen eine grundlegende Rolle spielt“, erklärt Tobias Dick.

Die Wissenschaftler erzeugten daraufhin ein genetisch verändertes GAPDH, das seiner Rolle im Zuckerstoffwechsel ganz normal nachkommt, aber ohne dabei durch H2O2 gehemmt werden zu können. In der Bäckerhefe ersetzten sie das gewöhnliche Enzym durch die oxidationsunempfindliche Variante. Unter normalen Umständen war kein Unterschied zu erkennen, der Zuckerabbau und das Wachstum der Zellen verliefen identisch.

Doch unter oxidativem Stress hatten die Zellen mit dem normalen, oxidations-empfindlichen GAPDH einen erheblichen Wachstumsvorteil: Wie die Forscher zeigten, führte die oxidative Blockade von GAPDH zu einer alternativen Verwendung des Zuckers. Dieser alternative Weg förderte jetzt vor allem die Bildung von NADPH, ein Molekül, das der Oxidation entgegenwirkt und der Zelle hilft, mit dem oxidativen Stress fertig zu werden. Auf diese Weise verschafft die Unterbrechung des normalen Zuckerabbaus der Zelle einen wichtigen Überlebensvorteil. Dies erklärt auch, warum sich die oxidative Hemmung der GAPDH in der Evolution der Lebewesen früh herausbildete und seither erhalten hat.

Als nächstes möchten die Forscher untersuchen, ob auch Krebszellen von der oxidativen Hemmung der GAPDH profitieren. David Peralta, der Erstautor der Studie, erläutert: „Krebszellen verwerten besonders viel Zucker und stehen zudem unter erhöhtem oxidativem Stress. Wir vermuten deshalb, dass sie sich die oxidative Hemmung der GAPDH für ihre Zwecke zunutze machen. Diesen Mechanismus abzuschalten, könnte Krebszellen besonders hart treffen.“

David Peralta, Agnieszka K Bronowska, Bruce Morgan, Éva Dóka, Koen Van Laer, Péter Nagy, Frauke Gräter, Tobias P Dick (2015). A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nature Chemical Biology 2015, DOI: 10.1038/nchembio.1720

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) klären Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Gemeinsam mit dem Universitätsklinikum Heidelberg hat das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg eingerichtet, in dem vielversprechende Ansätze aus der Krebsforschung in die Klinik übertragen werden. Im Deutschen Konsortium für Translationale Krebsforschung (DKTK), einem der sechs Deutschen Zentren für Gesundheitsforschung, unterhält das DKFZ Translationszentren an sieben universitären Partnerstandorten. Die Verbindung von exzellenter Hochschulmedizin mit der hochkarätigen Forschung eines Helmholtz-Zentrums ist ein wichtiger Beitrag, um die Chancen von Krebspatienten zu verbessern. Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Ansprechpartner für die Presse:

Dr. Stefanie Seltmann
Leiterin Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
T: +49 6221 42-2854
F: +49 6221 42-2968
E-Mail: S.Seltmann@dkfz.de

Dr. Sibylle Kohlstädt
Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
T: +49 6221 42 2843
F: +49 6221 42 2968
E-Mail: S.Kohlstaedt@dkfz.de

E-Mail: presse@dkfz.de

www.dkfz.de

Dr. Stefanie Seltmann | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Demenz: Neue Substanz verbessert Gehirnfunktion
28.07.2017 | Technische Universität München

nachricht Mit einem Flow-Reaktor umweltschonend Wirkstoffe erzeugen
28.07.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Firmen räumen bei der IT, Mobilgeräten und Firmen-Hardware am liebsten in der Urlaubsphase auf

28.07.2017 | Unternehmensmeldung

Dunkel war’s, der Mond schien helle: Nachthimmel oft heller als gedacht

28.07.2017 | Geowissenschaften

8,2 Millionen Euro für den Kampf gegen Leukämie

28.07.2017 | Förderungen Preise