Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Oxidativer Stress: Alternative Zuckerverwertung sichert das Überleben der Zelle

15.01.2015

Oxidativer Stress in der Zelle blockiert den normalen Zuckerstoffwechsel. Wissenschaftler im Deutschen Krebsforschungszentrum (DKFZ) und im Heidelberger Institut für Theoretische Studien (HITS) haben nun herausgefunden: Die lange bekannte Unterbrechung des normalen Zuckerstoffwechsels unter Stressbedingungen ist keine unkontrollierte Störung, sondern ganz im Gegenteil, wichtig für das Überleben der Zellen. Dafür sorgt ein hochspezifischer Mechanismus, der sich in der Evolution früh herausbildete und sogar schon bei Bakterien nachweisbar ist. Krebszellen profitieren möglicherweise besonders davon.

Traubenzucker liefert Energie und Bausteine für die Zellen in unserem Körper. Wissenschaftler wissen schon seit langem, dass unter oxidativem Stress, wie er etwa bei Entzündungen oder Vergiftungen entstehen kann, der normale Abbau des Traubenzuckers ins Stocken gerät.

Denn eines der zentralen Enzyme beim Zuckerabbau, GAPDH (Glycerinaldehyd-3-phosphat-Dehydrogenase), hat eine besondere Eigenschaft: Es wird ungewöhnlich schnell und effizient durch Wasserstoffperoxid (H2O2) oxidiert und dabei inaktiviert. Immunzellen setzten bei chronischen entzündlichen Reaktionen dauerhaft H2O2 frei – ein charakteristisches Kennzeichen für den oxidativen Stress.

Doch warum wird GAPDH durch H2O2 so viel leichter und schneller abgeschaltet als andere Enzyme? Und was bedeutet die Unterbrechung des Zuckerstoffwechsels für die Zelle? „Bislang dachte man, dass die oxidative Inaktivierung von GAPDH nur die schicksalhafte Begleiterscheinung seiner allgemein hohen Reaktivität ist“, sagt Privatdozent Dr. Tobias Dick vom Deutschen Krebsforschungszentrum.

„Denn damit GAPDH effizient Zucker abbauen kann, hat das Enzym ein hochreaktives Zentrum. Dieses reagiert unspezifisch mit H2O2 und hemmt sich dabei selbst“, beschreibt der Wissenschaftler den gängigen Erklärungsversuch. Will die Zelle aus Zucker effizient Energie gewinnen, muss sie also zwangsläufig in Kauf nehmen, dass der Zuckerstoffwechsel bei oxidativem Stress gestört wird – so vermutete man bislang.

Das Gegenteil ist der Fall, wie nun die Arbeitsgruppe um Tobias Dick zusammen mit dem Team um Professor Frauke Gräter vom Heidelberger Institut für Theoretische Studien (HITS) und Kollegen vom Nationalen Institut für Onkologie in Budapest zeigen konnten: Die Wissenschaftler entdeckten einen bisher unbekannten Mechanismus, der die Reaktion von GAPDH mit H2O2 ganz spezifisch herbeiführt.

Wie die Forscher mithilfe von Laborexperimenten und Computersimulationen herausfanden, ist die hohe Empfindlichkeit von GAPDH für H2O2, entgegen allen bisherigen Annahmen, kein Nebeneffekt der allgemeinen GAPDH-Reaktivität. Stattdessen beschleunigt GAPDH seine eigene oxidative Hemmung, spezifisch und unabhängig von seiner Aktivität im Zuckerstoffwechsel.

„Wir waren überrascht festzustellen, dass sich dieser spezielle Mechanismus in der GAPDH von fast allen Lebewesen findet, von Bakterien bis zum Menschen. Alles deutet darauf hin, dass er für das Überleben unter Stressbedingungen eine grundlegende Rolle spielt“, erklärt Tobias Dick.

Die Wissenschaftler erzeugten daraufhin ein genetisch verändertes GAPDH, das seiner Rolle im Zuckerstoffwechsel ganz normal nachkommt, aber ohne dabei durch H2O2 gehemmt werden zu können. In der Bäckerhefe ersetzten sie das gewöhnliche Enzym durch die oxidationsunempfindliche Variante. Unter normalen Umständen war kein Unterschied zu erkennen, der Zuckerabbau und das Wachstum der Zellen verliefen identisch.

Doch unter oxidativem Stress hatten die Zellen mit dem normalen, oxidations-empfindlichen GAPDH einen erheblichen Wachstumsvorteil: Wie die Forscher zeigten, führte die oxidative Blockade von GAPDH zu einer alternativen Verwendung des Zuckers. Dieser alternative Weg förderte jetzt vor allem die Bildung von NADPH, ein Molekül, das der Oxidation entgegenwirkt und der Zelle hilft, mit dem oxidativen Stress fertig zu werden. Auf diese Weise verschafft die Unterbrechung des normalen Zuckerabbaus der Zelle einen wichtigen Überlebensvorteil. Dies erklärt auch, warum sich die oxidative Hemmung der GAPDH in der Evolution der Lebewesen früh herausbildete und seither erhalten hat.

Als nächstes möchten die Forscher untersuchen, ob auch Krebszellen von der oxidativen Hemmung der GAPDH profitieren. David Peralta, der Erstautor der Studie, erläutert: „Krebszellen verwerten besonders viel Zucker und stehen zudem unter erhöhtem oxidativem Stress. Wir vermuten deshalb, dass sie sich die oxidative Hemmung der GAPDH für ihre Zwecke zunutze machen. Diesen Mechanismus abzuschalten, könnte Krebszellen besonders hart treffen.“

David Peralta, Agnieszka K Bronowska, Bruce Morgan, Éva Dóka, Koen Van Laer, Péter Nagy, Frauke Gräter, Tobias P Dick (2015). A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nature Chemical Biology 2015, DOI: 10.1038/nchembio.1720

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) klären Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Gemeinsam mit dem Universitätsklinikum Heidelberg hat das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg eingerichtet, in dem vielversprechende Ansätze aus der Krebsforschung in die Klinik übertragen werden. Im Deutschen Konsortium für Translationale Krebsforschung (DKTK), einem der sechs Deutschen Zentren für Gesundheitsforschung, unterhält das DKFZ Translationszentren an sieben universitären Partnerstandorten. Die Verbindung von exzellenter Hochschulmedizin mit der hochkarätigen Forschung eines Helmholtz-Zentrums ist ein wichtiger Beitrag, um die Chancen von Krebspatienten zu verbessern. Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Ansprechpartner für die Presse:

Dr. Stefanie Seltmann
Leiterin Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
T: +49 6221 42-2854
F: +49 6221 42-2968
E-Mail: S.Seltmann@dkfz.de

Dr. Sibylle Kohlstädt
Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
T: +49 6221 42 2843
F: +49 6221 42 2968
E-Mail: S.Kohlstaedt@dkfz.de

E-Mail: presse@dkfz.de

www.dkfz.de

Dr. Stefanie Seltmann | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten