Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Origami auf der Samenkapsel

10.06.2011
Die Deckel über den Samenbehältern einer Mittagsblume falten sich auf, wenn eine Wabenstruktur auf ihrer Innenseite aufquillt

Manche Pflanzen verbreiten ihre Samen geradezu kunstvoll: Die Samenkapseln der Mittagsblume Delosperma nakurense etwa falten Deckel über den Samenkammern in der Art eines beweglichen Origamis auf, sobald sie von Regen benetzt werden.


Die Samenkapsel der Mittagsblume D. nakurense öffnet sich im richtigen Moment. Solange Trockenheit herrscht, verschließen fünf Deckel die Kapsel (links). Sobald es regnet, klappen die fünf Deckel der Kapsel auf (rechts). Sie werden von einem quellbaren Gewebe aufgedrückt, das sich mit Wasser vollsaugt. © Matt Harrington / MPI für Kolloid- und Grenzflächenforschung


Die Wabenstruktur, die sich mit Wasser vollgesogen und bevorzugt in einer Richtung ausgedehnt hat. Blau haben die Forscher die quellbare Zellulose eingefärbt. Rot markiert das Lignin in den Zellwänden. © Matt Harrington / MPI für Kolloid- und Grenzflächenforschung

Das haben Forscher des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam und der Technischen Universität Dresden in einer genauen Untersuchung des Öffnungsmechanismus herausgefunden. Die Deckel klappen demnach auf, weil Zellen auf ihrer Innenseite Wasser aufnehmen und ihre Struktur ändern. So stellt die Pflanze, die in sehr trockenen Gegenden wächst, sicher, dass ihre Saat gute Chancen hat aufzugehen. Die Forscher möchten nach diesem Vorbild nun Materialien entwickeln, die sich bewegen, wenn sie feucht werden oder wenn sich ihre Temperatur ändert.

Um sich zu regen, brauchen einige Pflanzen keine lebendigen Zellen, die mit ihrem Stoffwechsel eine Bewegung antreiben. Grannen krümmen sich, wenn sie feucht werden, Zapfen öffnen sich, wenn sie an der Luft trocknen. „Doch bei den Samenkapseln Delosperma nakurense haben wir eine ausgesprochen komplexe Bewegung von nicht mehr lebenden Pflanzenmaterial beobachtet“, sagt Ingo Burgert. Der Wissenschaftler leitet am Max-Planck-Institut für Kolloid- und Grenzflächenforschung eine Arbeitsgruppe in der Abteilung Biomaterialien von Peter Fratzl und hatte gemeinsam mit Christoph Neinhuis von der TU Dresden die Idee, den Öffnungsmechanismus der Samenkapseln von D. nakurense zu erforschen.

Das Forscherteam hat herausgefunden, dass sich die Deckel der Samenkapseln an einer Art Gelenk auffalten, wenn sie feucht werden. Umgekehrt schließen sie sich wieder, sobald sie trocknen. Da sich dabei auch die Krümmung der Klappen verändert, decken diese die Samenkammern bei Trockenheit dicht ab. Die Krümmung verhindert zudem, dass sich ein Verschluss unbeabsichtigt öffnet. „Es handelt sich also um einen koordinierten Faltmechanismus in zwei Richtungen, wie man ihn von beweglichen Origamis kennt“, sagt Matthew Harrington, der diese Bewegung gemeinsam mit seinen Kollegen im Detail analysiert hat. Demnach verformen sich die fünf Deckel der Samenkapsel aufgrund ihrer raffinierten Struktur und einer geschickten Kombination der Eigenschaften verschiedener biologischer Materialien.

Die Deckel besitzen eine dreieckige Form, so dass die Samenkapsel in geöffnetem Zustand an einen fünfzackigen Stern erinnert. Sie tragen ein stark quellbares Gewebe und zwar auf der Seite, die im geschlossenen Zustand nach unten weist und im offenen nach oben. Das Gewebe teilt sich in zwei Hälften und läuft auf den offenen Deckeln – wenn die Kapsel also feucht ist – von innen nach außen. Die beiden Hälften schließen sich dann zu einem schmalen Grat. Bei Trockenheit trennt ein Spalt die beiden Hälften des Gewebes. In diesen Spalten befinden sich im trockenen Zustand die Trennwände der fünf Samenkammern, so dass die Kammern dicht verschlossen sind.

Quellende Zellulose öffnet die Samenkapsel
Wenn der Deckel aufklappt, verformt er sich vor allem dort, wo er an der Kapsel ansetzt. „Dieser Abschnitt wirkt wie ein Gelenk“, sagt Matthew Harrington. Wie sich der Verschluss öffnet, offenbarte den Forschern aber erst ein sehr genauer Blick auf die Struktur des quellbaren Gewebes. Dieses besteht nämlich aus oben offenen, mehr oder weniger sechseckigen Zellen, die eine Wabenstruktur bilden.

Der Öffnungsmechanismus funktioniert aber nur, weil die Zellen aus zwei verschiedenen Materialien aufgebaut sind, wie die Forscher in spektroskopischen Untersuchungen festgestellt haben: Die Zellwände bestehen im Wesentlichen aus Zellulose und Lignin, einem Hauptbestandteil von Holz. Lignin nimmt wenig Wasser auf. Im Zellinneren befindet sich dagegen Zellulose ohne Lignin, die viel Wasser aufsaugt und dabei stark quillt. Damit ist die Maschine komplett, die quasi mit Wasserkraft ein Origami faltet: „Wenn die Zellulose sich ausdehnt, weitet sie die sechseckigen Zellen vor allem in Längsrichtung des Deckels“, erklärt Harrington. So dehnt sich die Wabenstruktur in dieser Richtung aus und drückt dabei den Deckel auf. Umgekehrt schließt sich die Klappe wieder, wenn die Zellulose trocknet und die Wabenstruktur sich zusammenzieht.

„Der Mechanismus ist für technische Anwendungen interessant, weil die Energie für die gerichtete Bewegung bereits im Material gespeichert ist“, sagt Peter Fratzl. Im Rahmen des von der DFG geförderten Schwerpunktprogramms 1420 “Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials” möchten die Wissenschaftler dieses Konzept nun in eine Technik übertragen, die etwa in der Biomedizin oder der Architektur Anwendung finden könnte. Das Prinzip lässt sich zudem auf Materialien übertragen, die sich unterschiedlich stark ausdehnen oder zusammenziehen, wenn sich die Temperatur ändert. Eine Markise entfaltet sich dann irgendwann vielleicht von selbst über der Terrasse, wenn die Sonne ungemütlich heiß brennt.

Ansprechpartner
Dr. Matthew Harrington
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam
Telefon: +49 331 567-9452
Fax: +49 331 567-9402
E-Mail: matt.harrington@mpikg.mpg.de
Dr. habil. Ingo Burgert
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam
Telefon: +49 331 567-9432
Fax: +49 331 567-9402
E-Mail: ingo.burgert@mpikg.mpg.de
Originalveröffentlichung
Matthew J. Harrington, Khashayar Razghandi, Friedrich Ditsch, Lorenzo Guiducci, Markus Rueggeberg, John W.C. Dunlop, Peter Fratzl, Christoph Neinhuis & Ingo Burgert
Origami-like unfolding of hydro-actuated ice plant seed capsules
Nature Communications, 7. Juni 2011; DOI: 10.1038/ncomms1336

| Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4340952

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Immunabwehr ohne Kollateralschaden
23.01.2017 | Universität Basel

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie