Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Origami auf der Samenkapsel

10.06.2011
Die Deckel über den Samenbehältern einer Mittagsblume falten sich auf, wenn eine Wabenstruktur auf ihrer Innenseite aufquillt

Manche Pflanzen verbreiten ihre Samen geradezu kunstvoll: Die Samenkapseln der Mittagsblume Delosperma nakurense etwa falten Deckel über den Samenkammern in der Art eines beweglichen Origamis auf, sobald sie von Regen benetzt werden.


Die Samenkapsel der Mittagsblume D. nakurense öffnet sich im richtigen Moment. Solange Trockenheit herrscht, verschließen fünf Deckel die Kapsel (links). Sobald es regnet, klappen die fünf Deckel der Kapsel auf (rechts). Sie werden von einem quellbaren Gewebe aufgedrückt, das sich mit Wasser vollsaugt. © Matt Harrington / MPI für Kolloid- und Grenzflächenforschung


Die Wabenstruktur, die sich mit Wasser vollgesogen und bevorzugt in einer Richtung ausgedehnt hat. Blau haben die Forscher die quellbare Zellulose eingefärbt. Rot markiert das Lignin in den Zellwänden. © Matt Harrington / MPI für Kolloid- und Grenzflächenforschung

Das haben Forscher des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam und der Technischen Universität Dresden in einer genauen Untersuchung des Öffnungsmechanismus herausgefunden. Die Deckel klappen demnach auf, weil Zellen auf ihrer Innenseite Wasser aufnehmen und ihre Struktur ändern. So stellt die Pflanze, die in sehr trockenen Gegenden wächst, sicher, dass ihre Saat gute Chancen hat aufzugehen. Die Forscher möchten nach diesem Vorbild nun Materialien entwickeln, die sich bewegen, wenn sie feucht werden oder wenn sich ihre Temperatur ändert.

Um sich zu regen, brauchen einige Pflanzen keine lebendigen Zellen, die mit ihrem Stoffwechsel eine Bewegung antreiben. Grannen krümmen sich, wenn sie feucht werden, Zapfen öffnen sich, wenn sie an der Luft trocknen. „Doch bei den Samenkapseln Delosperma nakurense haben wir eine ausgesprochen komplexe Bewegung von nicht mehr lebenden Pflanzenmaterial beobachtet“, sagt Ingo Burgert. Der Wissenschaftler leitet am Max-Planck-Institut für Kolloid- und Grenzflächenforschung eine Arbeitsgruppe in der Abteilung Biomaterialien von Peter Fratzl und hatte gemeinsam mit Christoph Neinhuis von der TU Dresden die Idee, den Öffnungsmechanismus der Samenkapseln von D. nakurense zu erforschen.

Das Forscherteam hat herausgefunden, dass sich die Deckel der Samenkapseln an einer Art Gelenk auffalten, wenn sie feucht werden. Umgekehrt schließen sie sich wieder, sobald sie trocknen. Da sich dabei auch die Krümmung der Klappen verändert, decken diese die Samenkammern bei Trockenheit dicht ab. Die Krümmung verhindert zudem, dass sich ein Verschluss unbeabsichtigt öffnet. „Es handelt sich also um einen koordinierten Faltmechanismus in zwei Richtungen, wie man ihn von beweglichen Origamis kennt“, sagt Matthew Harrington, der diese Bewegung gemeinsam mit seinen Kollegen im Detail analysiert hat. Demnach verformen sich die fünf Deckel der Samenkapsel aufgrund ihrer raffinierten Struktur und einer geschickten Kombination der Eigenschaften verschiedener biologischer Materialien.

Die Deckel besitzen eine dreieckige Form, so dass die Samenkapsel in geöffnetem Zustand an einen fünfzackigen Stern erinnert. Sie tragen ein stark quellbares Gewebe und zwar auf der Seite, die im geschlossenen Zustand nach unten weist und im offenen nach oben. Das Gewebe teilt sich in zwei Hälften und läuft auf den offenen Deckeln – wenn die Kapsel also feucht ist – von innen nach außen. Die beiden Hälften schließen sich dann zu einem schmalen Grat. Bei Trockenheit trennt ein Spalt die beiden Hälften des Gewebes. In diesen Spalten befinden sich im trockenen Zustand die Trennwände der fünf Samenkammern, so dass die Kammern dicht verschlossen sind.

Quellende Zellulose öffnet die Samenkapsel
Wenn der Deckel aufklappt, verformt er sich vor allem dort, wo er an der Kapsel ansetzt. „Dieser Abschnitt wirkt wie ein Gelenk“, sagt Matthew Harrington. Wie sich der Verschluss öffnet, offenbarte den Forschern aber erst ein sehr genauer Blick auf die Struktur des quellbaren Gewebes. Dieses besteht nämlich aus oben offenen, mehr oder weniger sechseckigen Zellen, die eine Wabenstruktur bilden.

Der Öffnungsmechanismus funktioniert aber nur, weil die Zellen aus zwei verschiedenen Materialien aufgebaut sind, wie die Forscher in spektroskopischen Untersuchungen festgestellt haben: Die Zellwände bestehen im Wesentlichen aus Zellulose und Lignin, einem Hauptbestandteil von Holz. Lignin nimmt wenig Wasser auf. Im Zellinneren befindet sich dagegen Zellulose ohne Lignin, die viel Wasser aufsaugt und dabei stark quillt. Damit ist die Maschine komplett, die quasi mit Wasserkraft ein Origami faltet: „Wenn die Zellulose sich ausdehnt, weitet sie die sechseckigen Zellen vor allem in Längsrichtung des Deckels“, erklärt Harrington. So dehnt sich die Wabenstruktur in dieser Richtung aus und drückt dabei den Deckel auf. Umgekehrt schließt sich die Klappe wieder, wenn die Zellulose trocknet und die Wabenstruktur sich zusammenzieht.

„Der Mechanismus ist für technische Anwendungen interessant, weil die Energie für die gerichtete Bewegung bereits im Material gespeichert ist“, sagt Peter Fratzl. Im Rahmen des von der DFG geförderten Schwerpunktprogramms 1420 “Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials” möchten die Wissenschaftler dieses Konzept nun in eine Technik übertragen, die etwa in der Biomedizin oder der Architektur Anwendung finden könnte. Das Prinzip lässt sich zudem auf Materialien übertragen, die sich unterschiedlich stark ausdehnen oder zusammenziehen, wenn sich die Temperatur ändert. Eine Markise entfaltet sich dann irgendwann vielleicht von selbst über der Terrasse, wenn die Sonne ungemütlich heiß brennt.

Ansprechpartner
Dr. Matthew Harrington
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam
Telefon: +49 331 567-9452
Fax: +49 331 567-9402
E-Mail: matt.harrington@mpikg.mpg.de
Dr. habil. Ingo Burgert
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam
Telefon: +49 331 567-9432
Fax: +49 331 567-9402
E-Mail: ingo.burgert@mpikg.mpg.de
Originalveröffentlichung
Matthew J. Harrington, Khashayar Razghandi, Friedrich Ditsch, Lorenzo Guiducci, Markus Rueggeberg, John W.C. Dunlop, Peter Fratzl, Christoph Neinhuis & Ingo Burgert
Origami-like unfolding of hydro-actuated ice plant seed capsules
Nature Communications, 7. Juni 2011; DOI: 10.1038/ncomms1336

| Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4340952

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Kobold in der Zange
17.01.2018 | Leibniz-Institut für Katalyse e. V. an der Universität Rostock

nachricht Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen
16.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovationen in der Bionik gesucht!

18.01.2018 | Förderungen Preise

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungsnachrichten

Projekt "HorseVetMed": Forscher entwickeln innovatives Sensorsystem zur Tierdiagnostik

17.01.2018 | Agrar- Forstwissenschaften