Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Origami auf der Samenkapsel

10.06.2011
Die Deckel über den Samenbehältern einer Mittagsblume falten sich auf, wenn eine Wabenstruktur auf ihrer Innenseite aufquillt

Manche Pflanzen verbreiten ihre Samen geradezu kunstvoll: Die Samenkapseln der Mittagsblume Delosperma nakurense etwa falten Deckel über den Samenkammern in der Art eines beweglichen Origamis auf, sobald sie von Regen benetzt werden.


Die Samenkapsel der Mittagsblume D. nakurense öffnet sich im richtigen Moment. Solange Trockenheit herrscht, verschließen fünf Deckel die Kapsel (links). Sobald es regnet, klappen die fünf Deckel der Kapsel auf (rechts). Sie werden von einem quellbaren Gewebe aufgedrückt, das sich mit Wasser vollsaugt. © Matt Harrington / MPI für Kolloid- und Grenzflächenforschung


Die Wabenstruktur, die sich mit Wasser vollgesogen und bevorzugt in einer Richtung ausgedehnt hat. Blau haben die Forscher die quellbare Zellulose eingefärbt. Rot markiert das Lignin in den Zellwänden. © Matt Harrington / MPI für Kolloid- und Grenzflächenforschung

Das haben Forscher des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam und der Technischen Universität Dresden in einer genauen Untersuchung des Öffnungsmechanismus herausgefunden. Die Deckel klappen demnach auf, weil Zellen auf ihrer Innenseite Wasser aufnehmen und ihre Struktur ändern. So stellt die Pflanze, die in sehr trockenen Gegenden wächst, sicher, dass ihre Saat gute Chancen hat aufzugehen. Die Forscher möchten nach diesem Vorbild nun Materialien entwickeln, die sich bewegen, wenn sie feucht werden oder wenn sich ihre Temperatur ändert.

Um sich zu regen, brauchen einige Pflanzen keine lebendigen Zellen, die mit ihrem Stoffwechsel eine Bewegung antreiben. Grannen krümmen sich, wenn sie feucht werden, Zapfen öffnen sich, wenn sie an der Luft trocknen. „Doch bei den Samenkapseln Delosperma nakurense haben wir eine ausgesprochen komplexe Bewegung von nicht mehr lebenden Pflanzenmaterial beobachtet“, sagt Ingo Burgert. Der Wissenschaftler leitet am Max-Planck-Institut für Kolloid- und Grenzflächenforschung eine Arbeitsgruppe in der Abteilung Biomaterialien von Peter Fratzl und hatte gemeinsam mit Christoph Neinhuis von der TU Dresden die Idee, den Öffnungsmechanismus der Samenkapseln von D. nakurense zu erforschen.

Das Forscherteam hat herausgefunden, dass sich die Deckel der Samenkapseln an einer Art Gelenk auffalten, wenn sie feucht werden. Umgekehrt schließen sie sich wieder, sobald sie trocknen. Da sich dabei auch die Krümmung der Klappen verändert, decken diese die Samenkammern bei Trockenheit dicht ab. Die Krümmung verhindert zudem, dass sich ein Verschluss unbeabsichtigt öffnet. „Es handelt sich also um einen koordinierten Faltmechanismus in zwei Richtungen, wie man ihn von beweglichen Origamis kennt“, sagt Matthew Harrington, der diese Bewegung gemeinsam mit seinen Kollegen im Detail analysiert hat. Demnach verformen sich die fünf Deckel der Samenkapsel aufgrund ihrer raffinierten Struktur und einer geschickten Kombination der Eigenschaften verschiedener biologischer Materialien.

Die Deckel besitzen eine dreieckige Form, so dass die Samenkapsel in geöffnetem Zustand an einen fünfzackigen Stern erinnert. Sie tragen ein stark quellbares Gewebe und zwar auf der Seite, die im geschlossenen Zustand nach unten weist und im offenen nach oben. Das Gewebe teilt sich in zwei Hälften und läuft auf den offenen Deckeln – wenn die Kapsel also feucht ist – von innen nach außen. Die beiden Hälften schließen sich dann zu einem schmalen Grat. Bei Trockenheit trennt ein Spalt die beiden Hälften des Gewebes. In diesen Spalten befinden sich im trockenen Zustand die Trennwände der fünf Samenkammern, so dass die Kammern dicht verschlossen sind.

Quellende Zellulose öffnet die Samenkapsel
Wenn der Deckel aufklappt, verformt er sich vor allem dort, wo er an der Kapsel ansetzt. „Dieser Abschnitt wirkt wie ein Gelenk“, sagt Matthew Harrington. Wie sich der Verschluss öffnet, offenbarte den Forschern aber erst ein sehr genauer Blick auf die Struktur des quellbaren Gewebes. Dieses besteht nämlich aus oben offenen, mehr oder weniger sechseckigen Zellen, die eine Wabenstruktur bilden.

Der Öffnungsmechanismus funktioniert aber nur, weil die Zellen aus zwei verschiedenen Materialien aufgebaut sind, wie die Forscher in spektroskopischen Untersuchungen festgestellt haben: Die Zellwände bestehen im Wesentlichen aus Zellulose und Lignin, einem Hauptbestandteil von Holz. Lignin nimmt wenig Wasser auf. Im Zellinneren befindet sich dagegen Zellulose ohne Lignin, die viel Wasser aufsaugt und dabei stark quillt. Damit ist die Maschine komplett, die quasi mit Wasserkraft ein Origami faltet: „Wenn die Zellulose sich ausdehnt, weitet sie die sechseckigen Zellen vor allem in Längsrichtung des Deckels“, erklärt Harrington. So dehnt sich die Wabenstruktur in dieser Richtung aus und drückt dabei den Deckel auf. Umgekehrt schließt sich die Klappe wieder, wenn die Zellulose trocknet und die Wabenstruktur sich zusammenzieht.

„Der Mechanismus ist für technische Anwendungen interessant, weil die Energie für die gerichtete Bewegung bereits im Material gespeichert ist“, sagt Peter Fratzl. Im Rahmen des von der DFG geförderten Schwerpunktprogramms 1420 “Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials” möchten die Wissenschaftler dieses Konzept nun in eine Technik übertragen, die etwa in der Biomedizin oder der Architektur Anwendung finden könnte. Das Prinzip lässt sich zudem auf Materialien übertragen, die sich unterschiedlich stark ausdehnen oder zusammenziehen, wenn sich die Temperatur ändert. Eine Markise entfaltet sich dann irgendwann vielleicht von selbst über der Terrasse, wenn die Sonne ungemütlich heiß brennt.

Ansprechpartner
Dr. Matthew Harrington
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam
Telefon: +49 331 567-9452
Fax: +49 331 567-9402
E-Mail: matt.harrington@mpikg.mpg.de
Dr. habil. Ingo Burgert
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam
Telefon: +49 331 567-9432
Fax: +49 331 567-9402
E-Mail: ingo.burgert@mpikg.mpg.de
Originalveröffentlichung
Matthew J. Harrington, Khashayar Razghandi, Friedrich Ditsch, Lorenzo Guiducci, Markus Rueggeberg, John W.C. Dunlop, Peter Fratzl, Christoph Neinhuis & Ingo Burgert
Origami-like unfolding of hydro-actuated ice plant seed capsules
Nature Communications, 7. Juni 2011; DOI: 10.1038/ncomms1336

| Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4340952

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Vorstellung eines neuen Zellkultursystems für die Analyse von OPC-Zellen im Zebrafisch
23.10.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht Mehr Wissen über Proteine: Forscher aus Halle verbessern Massenspektrometrie-Verfahren
23.10.2017 | Martin-Luther-Universität Halle-Wittenberg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mehr Wissen über Proteine: Forscher aus Halle verbessern Massenspektrometrie-Verfahren

23.10.2017 | Biowissenschaften Chemie

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungsnachrichten

Stickoxide: Neuartiger Katalysator soll Abgase ohne Zusätze reinigen

23.10.2017 | Materialwissenschaften