Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Opalinuston als Wirtsgestein für Atommüll untersucht

15.02.2011
Mainzer Kernchemiker erforschen die Ausbreitung von radioaktiven
Elementen wie Plutonium in natürlichem Tongestein

Mehr als vier Jahre lang haben Mainzer Wissenschaftler natürliches Tongestein im Labor untersucht, um festzustellen, wie sich die radioaktiven Elemente Plutonium und Neptunium in diesem Gestein verhalten.

Die Untersuchungen erfolgten im Rahmen eines vom Bundesministerium für Wirtschaft und Technologie (BMWi) geförderten, bundesweiten Projekts zur Endlagerung radioaktiver Abfälle. Als Wirtsgestein für ein nukleares Endlager kommen grundsätzlich außer Salzstöcken und Granitformationen auch Tongesteine in Frage. Wie die Analysen der Kernchemiker um Univ.-Prof. Dr. Tobias Reich bestätigen, besitzt natürlicher Ton günstige Eigenschaften, die einer Ausbreitung radioaktiver Stoffe entgegenwirken.

„Der Ton scheint als Wirtsgestein geeignet zu sein, wobei noch Langzeitsicherheitsanalysen erforderlich sind“, fasst Reich, Geschäftsführender Leiter des Instituts für Kernchemie an der Johannes Gutenberg-Universität (JGU), die Ergebnisse zusammen.

Die für die Untersuchungen der Mainzer Kernchemiker benutzten Zylinder aus Ton haben einen weiten Weg hinter sich: Vom Felslabor Mont Terri im Schweizer Juragebirge werden Bohrkerne mit Opalinuston entnommen – eine Gesteinsformation, die vor rund 180 Millionen Jahren abgelagert wurde. Opalinuston ist in der Schweiz als mögliches Wirtsgestein für ein Atommüllendlager in der Diskussion. Die Bohrkerne kommen zur Herstellung von kleinen, elf Millimeter dicken, runden Scheiben zunächst nach Karlsruhe an das Institut für Nukleare Entsorgung. Am Institut für Kernchemie in Mainz werden diese Tonscheiben dann in Diffusionszellen gepackt und mit Porenwasser in Kontakt gebracht, das radioaktives Neptunium oder Plutonium enthält. Andere Tonproben wiederum kommen in Reagenzgläser, werden aufgeschlämmt, geschüttelt, zentrifugiert und anschließend mit hoch empfindlichen Massenspektrometern untersucht, um die Sorptionseigenschaften von Ton zu studieren. Und sie werden zu den Teilchenbeschleunigern nach Grenoble, Karlsruhe oder ins schweizerische Villigen (PSI) gebracht, wo 0,0015 Millimeter feine Synchrotronstrahlen den mit Radioelementen versetzten Ton sezieren. „Dadurch bekommen wir extrem hochaufgelöste Infos über die Verteilung der Elemente und sehen, wo und wie sie gebunden sind“, sagt Reich.

Die Schüttelversuche zeigen, dass im Falle von radioaktivem Plutonium der Oxidationsstufe vier eine fast 100-prozentige Adsorption an dem Opalinuston erfolgt, während kaum noch Plutonium in der Lösung verbleibt. Bei Neptunium der Oxidationsstufe fünf beträgt das Verhältnis 60 zu 40. Wird Neptunium aber beispielsweise durch Eisenmineralien im Ton zu Neptunium vier reduziert, erfolgt ebenfalls eine fast vollständige Bindung an Ton. Diffusionsversuche mit „radioaktivem“ Wasser zeigen, dass Wasser innerhalb einer Woche durch den 1,1 Zentimeter dicken Tonzylinder diffundiert. Neptunium kommt dagegen kaum vorwärts und wird auch noch nach einem Monat fast am Anfang des Weges gefunden.

Millimeterfeine Aufschnitte der kleinen Tonscheiben zeigen auch das chemische Verhalten der radioaktiven Elemente bei ihrem Weg durch das Gestein: Sechswertiges Plutonium wird auf dem Weg durch den Tonzylinder reduziert und tritt als vierwertiges Plutonium in Erscheinung. „Das ist von Vorteil, weil vierwertiges Plutonium an der Stelle sitzen bleibt.“ Reich und seine Arbeitsgruppe haben auch erkannt, wer für die Bindung der radioaktiven Stoffe zuständig ist: nämlich überwiegend die Tonminerale und nur in geringem Umfang auch Eisenmineralien, die für die Reduktion verantwortlich zeichnen.

Opalinuston, wie er nicht nur in der Schweiz, sondern auch im Süden Deutschlands vorkommt, scheint also für weitere Untersuchungen über das Ausbreitungsverhalten von langlebigen Radionukliden – bei Neptunium beträgt die Halbwertszeit 2,14 Millionen Jahre – geeignet zu sein. Ähnliche Ergebnisse erbrachten frühere Untersuchungen der Mainzer Kernchemiker mit Kaolinit-Tonmineralen aus den USA. „Wir haben nun das Instrumentarium entwickelt und die wichtigsten Prozesse festgelegt“, beschreibt Reich die abgeschlossenen Arbeiten am Opalinuston. Als nächstes wird seine Arbeitsgruppe in den kommenden drei Jahren die Eigenschaften von Ton mit höheren Salzgehalten erforschen.

Die Studien sind Teil von Untersuchungen zur Standortauswahl für ein nukleares Endlager, die das BMWi 1995 gestartet hat. Bei dem Verbundprojekt „Migration und Transport von Actiniden im natürlichen Tongestein unter Berücksichtigung von Huminstoffen und Tonorganika“ sind insgesamt acht Forschungseinrichtungen damit befasst, die Eignung von Opalinuston als Wirtsgestein für die Endlagerung von hochradioaktiven Abfällen zu untersuchen. Das Institut für Kernchemie an der Johannes Gutenberg-Universität Mainz ging 1972 aus dem Institut für Anorganische Chemie und Kernchemie hervor und beschäftigt derzeit rund 100 Mitarbeiter. Es betreibt einen der drei Forschungsreaktoren in Deutschland.

Veröffentlichung:
T. Wu, S. Amayri, J. Drebert, L.R. Van Loon, T. Reich
Neptunium(V) sorption and diffusion in Opalinus clay
Environ. Sci. Technol. 49 (2009) 6567
D.R. Fröhlich, S. Amayri, J. Drebert, T. Reich
Sorption of neptunium(V) on Opalinus clay under aerobic/anaerobic conditions
Radiochim. Acta 99 (2011) 71
Weitere Informationen:
Univ.-Prof. Dr. Tobias Reich
Institut für Kernchemie
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-25250
Fax +49 6131 39-27250
E-Mail: tobias.reich@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.kernchemie.uni-mainz.de
http://www.uni-mainz.de/FB/Chemie/AK-Reich/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften