Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neutronen beleuchten Wirkmechanismus lebenswichtiger Enzyme: Eiskalt erwischt

11.07.2014

Eisenhaltige Eiweiße aus der Familie der Hämenzyme spielen eine lebenswichtige Rolle in unserem Körper. Hämoglobin transportiert Sauerstoff zu den Zellen, das Entgiftungsenzym Cytochrom-c-Peroxidase baut Wasserstoffperoxid ab.

Die Reaktionen verlaufen über mehrere Schritte. Den wichtigen Zwischenzustand I hat ein internationales Forscherteam nun mithilfe des Neutronen-Messgeräts BIODIFF entschlüsselt. Mit dem von der Technischen Universität München (TUM) und dem Forschungszentrum Jülich gemeinsam betriebenen Gerät konnten die Forscher erstmals die genaue Natur der chemischen Bindung des Sauerstoffs ermitteln.


Dr. Andreas Ostermann (rechts) und Dr. Tobias Schrader am Messinstrument BIODIFF des Heinz Maier-Leibnitz Zentrums in Garching

Bild: W. Schürmann / TUM


Enzym Cytochrom-c-Peroxidase mit Ausschnitt aus dem aktiven Zentrum. Rot markiert ist das Sauerstoffatom, grün das Eisenatom. Das zusätzlich gefundene Wasserstoffatom ist eingekreist.

Grafik: A. Ostermann / TUM

Cytochrom-c-Peroxidasen (CCP) gehören zu der großen Familie der eisenhaltigen Hämenzyme. Die in ihnen enthaltene Hämgruppe spielt in vielen wichtigen biologischen Prozessen eine Rolle und findet sich unter anderem in dem Sauerstofftransport-Protein Hämoglobin, das dem Blut seine rote Farbe verleiht.

Die Hauptaufgabe der modellhaft untersuchten CCP besteht darin, Wasserstoffperoxid (H2O2) zu Wasser (H2O) zu reduzieren und damit Zellen in nahezu allen atmenden Organismen zu entgiften.

Die Reaktion läuft in mehreren Schritten ab, bei denen die langkettigen, komplex gefalteten CCP-Moleküle verschiedene Zwischenzustände einnehmen. Den sogenannten Zwischenzustand I gibt es in vielen Hämenzymen, die Sauerstoff übertragen und beim Abbau von Medikamenten eine wichtige Rolle spielen.

Trotz zahlreicher Untersuchungen ließ sich bisher nicht eindeutig klären, wie die Struktur im aktiven Zentrum dieses Zwischenzustands genau beschaffen ist. Besonders die wichtige Bindung zwischen dem Eisenatom im aktiven Hämzentrum und dem Sauerstoff wurde in den vergangenen dreißig Jahren kontrovers diskutiert. Dabei blieb bis zuletzt die Frage offen, ob ein zusätzliches Wasserstoffatom am Sauerstoff gebunden ist – oder eben nicht, wie die Wissenschaftler nun überraschend festgestellt haben.

Sowohl spektroskopische- als auch Röntgenuntersuchungen scheiterten bisher an der Aufgabe, die Zwischenstruktur zu erfassen. Die ionisierenden Röntgenstrahlen spalten Wassermoleküle im Proteinkristall und erzeugen so freie Elektronen, mit denen das Eisen im aktiven Zentrum des Enzyms reagiert. Dadurch verändert sich der Zustand des aktiven Zentrums.

„Bei Neutronen besteht die Gefahr einer solchen Ionisierung nicht. Zudem sind Neutronen besonders sensitiv für Wasserstoffatome“, erklärt Dr. Andreas Ostermann von der TU München. Gemeinsam mit Dr. Tobias Schrader vom Forschungszentrum Jülich hat er die Messungen am Heinz Maier-Leibnitz Zentrum (MLZ) betreut und die Rohdaten für die Auswertung geliefert.

„Neutronenstreuung ist deshalb eine ideale Ergänzung zu Röntgenuntersuchungen, wann immer es nötig ist, die Position von Wasserstoffatomen zu bestimmen“, so Schrader. „Die Möglichkeit diese Zwischenzustände bei tiefen Temperaturen festzuhalten und gleichzeitig Informationen darüber mit der Neutronenkristallographie zu erhalten, heißt, dass wir die Wasserstoffatome endlich sehen können.“, sagt Professor Peter Moody von der Universität Leicester.

Die Forscher um Professor Dr. Emma Raven und Professor Dr. Peter Moody von der Universität Leiceister untersuchten Kristalle des Enzyms CCP sowohl an der Neutronenquelle des Institut Laue-Langevin (ILL) in Grenoble, als auch an der Forschungs-Neutronenquelle FRM II der TUM in Garching.

Am ILL untersuchten sie den Grundzustand des Enzyms bei Raumtemperatur, am FRM II bestimmten die Wissenschaftler bei tiefen Temperaturen den Zwischenzustand I. Dazu wurde das Protein mit Wasserstoffperoxid behandelt, im aktivierten Zwischenzustand schockgefroren und mit dem Diffraktometer BIODIFF bei minus 173° Celsius analysiert. Nur so konnte das Enzym dauerhaft in seinem Zwischenzustand festgehalten und untersucht werden.

Emma Raven und ihre Kollegen fanden bei den Neutronenmessungen heraus, dass das Eisen im aktiven Zentrum nur mit einem Sauerstoff verbunden ist. Das Wasserstoffatom fehlt also. Zu ihrer Überraschung entdeckten die Wissenschaftler mit den Neutronenmessungen außerdem eine Gruppe im aktiven Zentrum, die ein weiteres Wasserstoffatom trägt, was bislang nicht bekannt war. Für diese gesamte Familie von Enzymen muss deshalb nun der Wirkmechanismus neu überdacht werden.

Publikation:

Neutron cryo-crystallography captures the protonation state of ferryl heme in a peroxidase
Cecilia M. Casadei, Andrea Gumiero, Clive L. Metcalfe, Emma J. Murphy, Jaswir Basran, Maria Grazia Concilio, Susana C. M. Teixeira, Tobias E. Schrader, Alistair J. Fielding, Andreas Ostermann, Matthew P. Blakeley, Emma L. Raven, Peter C. E. Moody
Science, 11.07.2014

Kontakt:

Dr. Andreas Ostermann
Technische Universität München
Forschungs-Neutronenquelle FRM II
Lichtenbergstr. 1, 85748 Garching, Germany
Tel: +49 89 289 14702
E-Mail: andreas.ostermann@frm2.tum.de

Weitere Informationen:

http://www.mlz-garching.de/biodiff

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie