Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neurone im Gehirn hören auf Gliazellen

15.12.2014

Kommunikation im Gehirn: Forschungskooperation weist eine veränderte Informationsübertragung zwischen Neuronen nach / Ausgangspunkt ist erstmals eine bestimmte Gruppe der Gliazellen / Wichtige Funktion für Lernvorgänge und Empfindungsverarbeitung

Wissenschaftler der Johannes Gutenberg-Universität Mainz (JGU) haben eine neue Verbindung im Gehirn entdeckt, die für Lernprozesse und die Verarbeitung von Empfindungen eine wichtige Rolle spielt.


Oligodendrozyten-Vorläuferzellen (grün) im Gehirn beeinflussen die synaptische Übertragung zwischen Nervenzellen (rot) des neuronalen Netzwerks.

Abb.: Abt. Molekulare Zellbiologie, JGU


Modell über die aufgedeckten molekularen Signalwege zwischen den OPC (grün), einer Untergruppe der Gliazellen, und dem neuronalen Netzwerk (grau). Ein zentraler Mechanismus stellt hierbei die Abspaltung eines Fragments des NG2-Proteins von den OPC dar (siehe 1), das die Signalübertragung an bestimmten (erregenden) Synapsen des neuronalen Netzwerkes moduliert (siehe 2).

Abb.: Abt. Molekulare Zellbiologie, JGU

Bekannt war, dass bestimmte Gliazellen Informationen von Neuronen empfangen. Dagegen wusste man bisher nicht, dass diese Gliazellen ebenfalls Informationen an die Neurone, also die Nervenzellen, aussenden.

Sie setzen dazu ein Proteinfragment frei, das wahrscheinlich an die synaptischen Kontaktpunkte andockt, über die Neurone untereinander Informationen austauschen.

Wird diese Informationsweiterleitung unterbrochen, zeigt das neuronale Netzwerk Veränderungen zum Beispiel bei zellulären Lernprozessen. Das Team um Dr. Dominik Sakry, Dr. Angela Neitz sowie Univ.-Prof. Dr. Jacqueline Trotter und Univ.-Prof. Dr. Thomas Mittmann hat den grundlegenden Mechanismus aufgedeckt und von der molekularen über die zelluläre Ebene zur Netzwerks- und schließlich bis zur Verhaltensebene untersucht.

Die Ergebnisse stellen einen wichtigen Fortschritt in unserem Verständnis der komplizierten Signalübertragungswege im Gehirn dar.

Im Gehirn von Säugetieren befinden sich wesentlich mehr Gliazellen als Nervenzellen, aber was genau alles zu ihren Aufgaben gehört, ist zum Großteil noch unbekannt. Von einer bestimmten Art von Gliazellen, den Oligodendrozyten-Vorläuferzellen, weiß man, dass sie sich zu Oligodendrozyten entwickeln, die dann die Nervenzellfortsätze (Axone) mit einer schützenden Myelinhülle umgeben und so zur schnellen Weiterleitung von Informationsimpulsen beitragen.

Interessanterweise sind diese Vorläuferzellen auch im erwachsenen Alter in allen Gehirnregionen als eine stabile Population vorzufinden und machen immerhin fünf bis acht Prozent aller Gehirnzellen aus. Diese Vorläuferzellen, kurz OPC (Oligodendrocyte Precursor Cells) genannt, haben sich die Mainzer Wissenschaftler genauer angeschaut.

Bekannt war seit dem Jahr 2000, dass die OPC über neu entdeckte Synapsen Signale vom neuronalen Netzwerk erhalten. „Wie wir jetzt entdeckt haben, empfangen die Vorläuferzellen nicht nur Informationen über die Synapsen, sondern sie senden ihrerseits auch Signale an benachbarte Nervenzellen aus. Sie sind damit ein essenzielles Mitglied des gesamten Netzwerkes“, erklärt Jacqueline Trotter von der Abteilung Molekulare Zellbiologie.

Die diversen Funktionen des Gehirns wurden früher im Wesentlichen durch die Neurone erklärt. In den letzten Jahren zeigt sich aber zunehmend, dass Gliazellen vielleicht eine ebenbürtige Rolle spielen. „Gliazellen sind enorm wichtig für unser Gehirn, und wir konnten nun im Detail eine weitere bedeutende Funktion für die Signalübertragung nachweisen“, erläutert Thomas Mittmann vom Institut für Physiologie der Universitätsmedizin Mainz.

Die Kommunikationskette beginnt damit, dass Informationen von Neuronen zu den OPC über den synaptischen Spalt mithilfe des Neurotransmitters Glutamat übertragen werden. In den OPC erhöht sich die Aktivität der Alpha-Sekretase ADAM 10. Sie spaltet nun vermehrt einen Teil des Proteins NG2 von der Vorläuferzelle ab, das dann durch den extrazellulären Raum zu den Nervenzellen wandert. Darauf reagieren die Neurone mit geänderten elektrischen Strömen, die messbar sind. „Wir können über sogenannte Patch-Clamp-Messungen den Zellen sozusagen zuhören, wie sie miteinander reden“, so Thomas Mittmann.

„Der ganze Mechanismus beginnt bereits bei dem Informationsempfang an den OPC, das heißt die Rückmeldung an die Neurone ist nicht losgelöst vom Empfang zu sehen“, beschreibt Dr. Dominik Sakry, einer der beiden Erstautoren der Studie, die Ereigniskaskade. Wie wichtig die Funktion von NG2 in diesem Ablauf ist, zeigt sich, wenn die Wissenschaftler das Protein entfernen: Die Synapsen der Neurone ändern dann ihre Funktion, die zellulären Lernvorgänge sind eingeschränkt und die Empfindungsverarbeitung ist gestört, was sich im Verhalten der Tiere zeigt.

Der Nachweis, dass die Kommunikation zwischen den beiden Zelltypen im Gehirn keine Einbahnstraße, sondern ein komplexer Mechanismus mit Rückkopplungen ist, wurde im Rahmen einer breiten Kooperation zwischen Physiologen und Molekularbiologen erbracht. An der Studie beteiligt waren an der JGU außer den Fachbereichen Universitätsmedizin und Biologie das Forschungszentrum Translationale Neurowissenschaften (FTN) und die Plattform für Mausverhalten (MBU) sowie zwei Mainzer Sonderforschungsbereiche (CRC 1080 und CRC-TR 128) sowie das Leibniz-Institut für Neurobiologie in Magdeburg. Wissenschaftler aus sieben Nationen waren an den Studien beteiligt.

Veröffentlichung:
Dominik Sakry, Angela Neitz et al.
Oligodendrocyte Precursor Cells Modulate the Neuronal Network by Activity-Dependent Ectodomain Cleavage of Glial NG2
PLoS Biology 12(11): e1001993, 11. November 2014
DOI: 10.1371/journal.pbio.1001993

Weitere Informationen:
Univ.-Prof. Dr. Jacqueline Trotter
Abteilung Molekulare Zellbiologie
Fachbereich Biologie
Johannes Gutenberg-Universität Mainz (JGU)
55099 Mainz
Tel. +49 6131 39-20263 oder 39-22879
Fax +49 6131 39-23840
E-Mail: trotter@uni-mainz.de
http://www.blogs.uni-mainz.de/fb10molcellbio/

Univ.-Prof. Dr. rer. nat. Thomas Mittmann
Institut für Physiologie
Universitätsmedizin der Johannes Gutenberg-Universität Mainz (JGU)
55099 Mainz
Tel. +49 0613139-27261
Fax +49 6131 39-25560
E-Mail: mittmann@uni-mainz.de
http://www.physiologie.uni-mainz.de/

Weitere Informationen:

http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001993 - Artikel in PLoS Biology ;
http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001990 - Synopsis ;
http://www.uni-mainz.de/presse/57165.php - Pressemitteilung „Mainzer Wissenschaftler entschlüsseln Mechanismen der Zellorientierung im Gehirn”, 31.07.2013

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften