Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neurone im Gehirn hören auf Gliazellen

15.12.2014

Kommunikation im Gehirn: Forschungskooperation weist eine veränderte Informationsübertragung zwischen Neuronen nach / Ausgangspunkt ist erstmals eine bestimmte Gruppe der Gliazellen / Wichtige Funktion für Lernvorgänge und Empfindungsverarbeitung

Wissenschaftler der Johannes Gutenberg-Universität Mainz (JGU) haben eine neue Verbindung im Gehirn entdeckt, die für Lernprozesse und die Verarbeitung von Empfindungen eine wichtige Rolle spielt.


Oligodendrozyten-Vorläuferzellen (grün) im Gehirn beeinflussen die synaptische Übertragung zwischen Nervenzellen (rot) des neuronalen Netzwerks.

Abb.: Abt. Molekulare Zellbiologie, JGU


Modell über die aufgedeckten molekularen Signalwege zwischen den OPC (grün), einer Untergruppe der Gliazellen, und dem neuronalen Netzwerk (grau). Ein zentraler Mechanismus stellt hierbei die Abspaltung eines Fragments des NG2-Proteins von den OPC dar (siehe 1), das die Signalübertragung an bestimmten (erregenden) Synapsen des neuronalen Netzwerkes moduliert (siehe 2).

Abb.: Abt. Molekulare Zellbiologie, JGU

Bekannt war, dass bestimmte Gliazellen Informationen von Neuronen empfangen. Dagegen wusste man bisher nicht, dass diese Gliazellen ebenfalls Informationen an die Neurone, also die Nervenzellen, aussenden.

Sie setzen dazu ein Proteinfragment frei, das wahrscheinlich an die synaptischen Kontaktpunkte andockt, über die Neurone untereinander Informationen austauschen.

Wird diese Informationsweiterleitung unterbrochen, zeigt das neuronale Netzwerk Veränderungen zum Beispiel bei zellulären Lernprozessen. Das Team um Dr. Dominik Sakry, Dr. Angela Neitz sowie Univ.-Prof. Dr. Jacqueline Trotter und Univ.-Prof. Dr. Thomas Mittmann hat den grundlegenden Mechanismus aufgedeckt und von der molekularen über die zelluläre Ebene zur Netzwerks- und schließlich bis zur Verhaltensebene untersucht.

Die Ergebnisse stellen einen wichtigen Fortschritt in unserem Verständnis der komplizierten Signalübertragungswege im Gehirn dar.

Im Gehirn von Säugetieren befinden sich wesentlich mehr Gliazellen als Nervenzellen, aber was genau alles zu ihren Aufgaben gehört, ist zum Großteil noch unbekannt. Von einer bestimmten Art von Gliazellen, den Oligodendrozyten-Vorläuferzellen, weiß man, dass sie sich zu Oligodendrozyten entwickeln, die dann die Nervenzellfortsätze (Axone) mit einer schützenden Myelinhülle umgeben und so zur schnellen Weiterleitung von Informationsimpulsen beitragen.

Interessanterweise sind diese Vorläuferzellen auch im erwachsenen Alter in allen Gehirnregionen als eine stabile Population vorzufinden und machen immerhin fünf bis acht Prozent aller Gehirnzellen aus. Diese Vorläuferzellen, kurz OPC (Oligodendrocyte Precursor Cells) genannt, haben sich die Mainzer Wissenschaftler genauer angeschaut.

Bekannt war seit dem Jahr 2000, dass die OPC über neu entdeckte Synapsen Signale vom neuronalen Netzwerk erhalten. „Wie wir jetzt entdeckt haben, empfangen die Vorläuferzellen nicht nur Informationen über die Synapsen, sondern sie senden ihrerseits auch Signale an benachbarte Nervenzellen aus. Sie sind damit ein essenzielles Mitglied des gesamten Netzwerkes“, erklärt Jacqueline Trotter von der Abteilung Molekulare Zellbiologie.

Die diversen Funktionen des Gehirns wurden früher im Wesentlichen durch die Neurone erklärt. In den letzten Jahren zeigt sich aber zunehmend, dass Gliazellen vielleicht eine ebenbürtige Rolle spielen. „Gliazellen sind enorm wichtig für unser Gehirn, und wir konnten nun im Detail eine weitere bedeutende Funktion für die Signalübertragung nachweisen“, erläutert Thomas Mittmann vom Institut für Physiologie der Universitätsmedizin Mainz.

Die Kommunikationskette beginnt damit, dass Informationen von Neuronen zu den OPC über den synaptischen Spalt mithilfe des Neurotransmitters Glutamat übertragen werden. In den OPC erhöht sich die Aktivität der Alpha-Sekretase ADAM 10. Sie spaltet nun vermehrt einen Teil des Proteins NG2 von der Vorläuferzelle ab, das dann durch den extrazellulären Raum zu den Nervenzellen wandert. Darauf reagieren die Neurone mit geänderten elektrischen Strömen, die messbar sind. „Wir können über sogenannte Patch-Clamp-Messungen den Zellen sozusagen zuhören, wie sie miteinander reden“, so Thomas Mittmann.

„Der ganze Mechanismus beginnt bereits bei dem Informationsempfang an den OPC, das heißt die Rückmeldung an die Neurone ist nicht losgelöst vom Empfang zu sehen“, beschreibt Dr. Dominik Sakry, einer der beiden Erstautoren der Studie, die Ereigniskaskade. Wie wichtig die Funktion von NG2 in diesem Ablauf ist, zeigt sich, wenn die Wissenschaftler das Protein entfernen: Die Synapsen der Neurone ändern dann ihre Funktion, die zellulären Lernvorgänge sind eingeschränkt und die Empfindungsverarbeitung ist gestört, was sich im Verhalten der Tiere zeigt.

Der Nachweis, dass die Kommunikation zwischen den beiden Zelltypen im Gehirn keine Einbahnstraße, sondern ein komplexer Mechanismus mit Rückkopplungen ist, wurde im Rahmen einer breiten Kooperation zwischen Physiologen und Molekularbiologen erbracht. An der Studie beteiligt waren an der JGU außer den Fachbereichen Universitätsmedizin und Biologie das Forschungszentrum Translationale Neurowissenschaften (FTN) und die Plattform für Mausverhalten (MBU) sowie zwei Mainzer Sonderforschungsbereiche (CRC 1080 und CRC-TR 128) sowie das Leibniz-Institut für Neurobiologie in Magdeburg. Wissenschaftler aus sieben Nationen waren an den Studien beteiligt.

Veröffentlichung:
Dominik Sakry, Angela Neitz et al.
Oligodendrocyte Precursor Cells Modulate the Neuronal Network by Activity-Dependent Ectodomain Cleavage of Glial NG2
PLoS Biology 12(11): e1001993, 11. November 2014
DOI: 10.1371/journal.pbio.1001993

Weitere Informationen:
Univ.-Prof. Dr. Jacqueline Trotter
Abteilung Molekulare Zellbiologie
Fachbereich Biologie
Johannes Gutenberg-Universität Mainz (JGU)
55099 Mainz
Tel. +49 6131 39-20263 oder 39-22879
Fax +49 6131 39-23840
E-Mail: trotter@uni-mainz.de
http://www.blogs.uni-mainz.de/fb10molcellbio/

Univ.-Prof. Dr. rer. nat. Thomas Mittmann
Institut für Physiologie
Universitätsmedizin der Johannes Gutenberg-Universität Mainz (JGU)
55099 Mainz
Tel. +49 0613139-27261
Fax +49 6131 39-25560
E-Mail: mittmann@uni-mainz.de
http://www.physiologie.uni-mainz.de/

Weitere Informationen:

http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001993 - Artikel in PLoS Biology ;
http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001990 - Synopsis ;
http://www.uni-mainz.de/presse/57165.php - Pressemitteilung „Mainzer Wissenschaftler entschlüsseln Mechanismen der Zellorientierung im Gehirn”, 31.07.2013

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Von Hefe für Demenzerkrankungen lernen
22.02.2018 | Heinrich-Heine-Universität Düsseldorf

nachricht Rettender Ritter in goldener Rüstung
22.02.2018 | Exzellenzcluster Entzündungsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von Hefe für Demenzerkrankungen lernen

22.02.2018 | Biowissenschaften Chemie

Sektorenkopplung: Die Energiesysteme wachsen zusammen

22.02.2018 | Seminare Workshops

Die Entschlüsselung der Struktur des Huntingtin Proteins

22.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics