Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Mechanismus der DNA-Bindung identifiziert

21.09.2012
Wissenschaftler aus Jena und München haben einen neuen Mechanismus der DNA-Bindung entdeckt.

Teams um Axel Brakhage, Direktor des Leibniz-Instituts für Naturstoff-Forschung und Infektionsbiologie und Lehrstuhlinhaber an der Universität Jena und Michael Groll von der Technischen Universität München studierten die Wechselwirkung des in der Natur weit verbreiteten Proteinkomplexes CBC mit der DNA.



Der Proteinkomplex CBC bindet die DNA-Doppelhelix. Eine Untereinheit lagert sich in die kleine Furche und steuert so die Genaktivität.

TUM/Huber



Die spezifische Bindung von CBC an die DNA-Doppelhelix beeinflusst die Genaktivität und spielt damit eine wichtige Rolle in der Regulation von Lebensvorgängen in der Zelle wie auch bei der Entstehung von Krankheiten. Die Ergebnisse wurden in der renommierten Fachzeitschrift Structure veröffentlicht.

Jede Zelle eines Organismus beinhaltet DNA, auf der sich sämtliche Gene dieses Lebewesens befinden. Entscheidend für Eigenschaften der einzelnen Zelle und damit auch für den gesamten Organismus ist jedoch, welche Gene zu einem bestimmten Zeitpunkt aktiv sind und in Proteine umgeschrieben werden. Hierfür sind Transkriptionsfaktoren zuständig. Das sind ihrerseits Proteine, die an spezifischen Stellen an die DNA binden und deren räumliche Struktur verändern, wodurch die Aktivität von Genen reguliert wird.

Den Teams um Axel Brakhage und Michael Groll ist es jetzt gelungen, einen neuartigen Mechanismus zu identifizieren, der eine solche Bindung an eine definierte DNA-Sequenz ermöglicht. Sie untersuchten am Schimmelpilz Aspergillus nidulans als Modellorganismus den Transkriptionsfaktor CBC.

CBC steht für CCAAT Binding Complex, weil das Protein ein Komplex aus drei Untereinheiten ist, der auf der DNA exakt die Basensequenz CCAAT erkennt und daran bindet. Diese Bindung verändert die räumliche Struktur der DNA und ermöglicht somit das Ablesen der in der Nachbarschaft befindlichen Gene. Die genaue Wirkungsweise des CBC-Komplexes, der bei allen Organismen außer Bakterien vorkommt, war bislang unbekannt.

Die Forscher stellten durch gentechnische Methoden das CBC-Protein her und brachten es zur Kristallisation – mit und ohne gebundene DNA. Durch Röntgenkristallographie konnten die Münchener Kollegen zeigen, an welchen Stellen die Proteine den Kontakt mit der DNA eingehen. Die Wissenschaftler aus Jena führten detaillierte biochemische Analysen der Bindung durch und komplettierten so die Untersuchungen. Daraus ergibt sich nun erstmals ein genaues Bild des Bindungsmechanismus: zwei der CBC-Bestandteile biegen die DNA, während die dritte Untereinheit eine bestimmte Sequenz in der sogenannten kleinen Furche der DNA-Doppelhelix erkennt.

Somit wird das Ablesen der Gene auf dem nachfolgenden DNA-Abschnitt ermöglicht. „Die Art und Weise, wie CBC an die DNA bindet, ist völlig neuartig und bietet uns interessante Einblicke in die evolutionäre Herkunft und Wirkungsweise dieses wichtigen Proteins“, erläutert Axel Brakhage die Ergebnisse. „Wir können diese Erkenntnisse nun verwenden um Krankheiten, an denen CBC beteiligt ist, besser zu verstehen. Möglicherweise kann CBC als Angriffspunkt für neue Medikamente dienen“.

Originalveröffentlichung
Huber EM, Scharf DH, Hortschansky P, Groll M, Brakhage AA (2012)
DNA Minor Groove Sensing and Widening by the CCAAT-Binding Complex
Structure doi:10.1016/j.str.2012.07.012

Informationen zum HKI
Das Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie – Hans-Knöll-Institut – wurde 1992 gegründet und gehört seit 2003 zur Leibniz-Gemeinschaft. Die Wissenschaftler des HKI befassen sich mit der Infektionsbiologie human-pathogener Pilze. Sie untersuchen die molekularen Mechanismen der Krankheitsauslösung und die Wechselwirkung mit dem menschlichen Immunsystem. Neue Naturstoffe aus Mikroorganismen werden auf ihre Wirksamkeit gegen Pilzerkrankungen untersucht und zielgerichtet modifiziert.
Das HKI verfügt derzeit über fünf wissenschaftliche Abteilungen, deren Leiter gleichzeitig berufene Professoren der Friedrich-Schiller-Universität Jena (FSU) sind. Hinzu kommen jeweils vier Nachwuchsgruppen und Querschnittseinrichtungen mit einer integrativen Funktion für das Institut, darunter das anwendungsorientierte Biotechnikum als Schnittstelle zur Industrie. Zur Zeit arbeiten mehr als 300 Menschen am HKI, darunter 110 Doktoranden.

Informationen zur Leibniz-Gemeinschaft
Die Leibniz-Gemeinschaft verbindet 86 selbständige Forschungseinrichtungen. Deren Ausrichtung reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts- und Sozialwissenschaften bis zu den Geisteswissenschaften. Leibniz-Institute bearbeiten gesellschaftlich, ökonomisch und ökologisch relevante Fragestellungen. Sie betreiben erkenntnis- und anwendungsorientierte Grundlagenforschung. Sie unterhalten wissenschaftliche Infrastrukturen und bieten forschungsbasierte Dienstleistungen an.
Die Leibniz-Gemeinschaft setzt Schwerpunkte im Wissenstransfer in Richtung Politik, Wissenschaft, Wirtschaft und Öffentlichkeit. Leibniz-Institute pflegen intensive Kooperationen mit den Hochschulen – u.a. in Form der Wissenschaftscampi –, mit der Industrie und anderen Partnern im In- und Ausland. Sie unterliegen einem maßstabsetzenden transparenten und unabhängigen Begutachtungsverfahren. Aufgrund ihrer gesamtstaatlichen Bedeutung fördern Bund und Länder die Institute der Leibniz-Gemeinschaft gemeinsam.

Die Leibniz-Institute beschäftigen rund 17.200 Personen, darunter 8.200 Wissenschaftlerinnen und Wissenschaftler. Der Gesamtetat der Institute liegt bei 1,4 Milliarden Euro.

Ansprechpartner
Dr. Michael Ramm
Wissenschaftliche Organisation
Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie e.V.
– Hans-Knöll-Institut –
Beutenbergstrasse 11a
07745 Jena
+49 3641 5321011 (T)
+49 1520 1848494 (M)
+49 3641 5320801 (F)
michael.ramm@hki-jena.de
Presseservice: pr@hki-jena.de

Dr. Michael Ramm | Leibniz-Institut
Weitere Informationen:
http://www.hki-jena.de/
http://www.cell.com/structure/retrieve/pii/S0969212612002638
http://www.leibniz-gemeinschaft.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie