Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Wirkmechanismen eröffnen alternative Wege zur Entwicklung von Antibiotika

13.02.2014
Proteasen sind lebenswichtige Proteine, die für Ordnung in der Zelle sorgen.

Sie spalten andere Eiweiße und bewirken, dass diese korrekt auf- oder abgebaut werden. Auch für die krankheitserregende Wirkung vieler Bakterienarten sind Proteasen verantwortlich.


Das Ziel des Angriffs: die Protease ClpP
Bild: M. Gersch/F. Alte / TUM

Nun haben Chemiker der Technischen Universität München (TUM) zwei bislang unbekannte Wirkmechanismen entdeckt, mit denen eine wesentliche bakterielle Protease dauerhaft ausgeschaltet werden kann.

Proteine bestehen aus einer Kette von Aminosäuren und sind für sämtliche Prozesse in der Zelle wesentlich. Einer der wichtigsten Proteintypen sind die Proteasen. Wie kleine „molekulare Scheren“ schneiden sie andere Eiweiße an bestimmten Stellen und übernehmen auf diese Weise wichtige Funktionen in der Zelle. Durch die Spaltung werden andere Proteine beispielsweise an- oder ausgeschaltet, fehlerhafte Proteine abgebaut oder Signalsequenzen, die dazu dienen Proteine an die richtige Stelle der Zelle zu transportieren, entfernt.

Doch nicht nur für menschliche Zellen sind Proteasen wichtig – auch Bakterien sind auf sie angewiesen. Gegen manche krankheitserregende Arten, wie etwa einige multiresistente Stämme des Erregers Staphylococcus aureus und des Tuberkulose verursachenden Bakteriums Mycobacterium tuberculosis gibt es heute kaum noch wirksame Antibiotika.

Mit hohem Aufwand versuchen Forscher daher weltweit neue Wege zu finden, die in diesen Stämmen vorkommenden Proteasen auszuschalten und so die Erreger zu bekämpfen. Im Zentrum der Bemühungen steht die sogenannte ClpP-Protease. Sie besteht aus vierzehn Untereinheiten und hat eine zentrale regulatorische Funktion. Meist wird versucht sie durch Substanzen auszuschalten, die alle aktiven Zentren der ClpP blockieren. Dies sind quasi „die Klingen der Schere“, jene Stellen des Proteins also, die für die Spaltung verantwortlich sind.

„Bisher eingesetzte Hemmstoffe haben jedoch einen entscheidenden Nachteil“, erklärt Stephan Sieber, Inhaber des Lehrstuhls für organische Chemie II der Technischen Universität München (TUM). „Sie schalten das Protein nicht dauerhaft aus, sondern wirken nur für einige Stunden. Zudem müssen sie alle aktiven Zentren des Proteins angreifen um eine Wirkung zu erzielen.“

Im Rahmen einer Kooperation mit Prof. Michael Groll, Inhaber des Lehrstuhls für Biochemie, ist es Malte Gersch und Roman Kolb, Doktoranden am Lehrstuhl von Professor Sieber, gelungen, gleich zwei vollkommen neue Mechanismen aufzuklären, mit denen diese wichtige bakterielle Protease dauerhaft ausgeschaltet werden kann – und das in einem Fall sogar ohne alle aktiven Zentren des Proteins angreifen zu müssen.

Der erste Mechanismus stört die Anordnung von Aminosäuren, die für den Zusammenhalt der Protease notwendig sind. Das lässt sie in zwei Teile zerfallen. Der zweite setzt direkt am Kern des aktiven Zentrums an. Er wandelt die Aminosäure, die die eigentliche Spaltung durchführt, in eine andere um – die „Schere“ wird stumpf, das Protein funktionsunfähig. Beide Wege hemmen die Protease auf vollkommen neue Weise und liefern daher vielversprechende Ansätze zur Entwicklung neuer Medikamente.

Die Wissenschaftler fanden zudem eine ganze Reihe von Hemmstoffen, die die beiden Mechanismen auslösen. „Es ist ein großer Fortschritt, dass wir nun wissen, auf welchen Wegen Substanzen die Protease ausschalten“, sagt Gersch. „Wir können nun die Substanzen optimieren und das Prinzip vielleicht auch auf andere Proteasen übertragen.“

In weiteren Forschungen möchten Gersch und Sieber ihre Substanzen an lebenden Bakterienstämmen testen, um zu sehen, ob diese in ihrem Wachstum und ihrer Pathogenität tatsächlich gehemmt werden. „Die Bakterien werden nach unseren jetzigen Erkenntnissen zwar nicht komplett ausgeschaltet, doch sie produzieren wesentlich weniger Toxine, die für eine Entzündung förderlich sind“, meint Gersch. „Die Grundidee dahinter ist, dass die Bildung neuer Resistenzen unterdrückt wird und wir damit dem Immunsystem mehr Zeit geben, selbst mit dem Erreger fertig zu werden.“

Die Forschungsarbeiten wurden gefördert von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen der Sonderforschungsbereiche SFB 749 und SFB 1035 sowie über den Exzellenzcluster Center for Integrated Protein Research Munich (CIPSM), aus Mitteln des European Research Council (ERC starting grant), des Fonds der Chemischen Industrie und der Studienstiftung des Deutschen Volkes. Die Kristallstrukturen wurden in Kooperation mit der Synchrotronquelle des Paul Scherrer Instituts in Villigen (Schweiz) ermittelt.

Originalpublikation:

Malte Gersch, Roman Kolb, Ferdinand Alte, Michael Groll, Stephan Sieber. Disruption of Oligomerization and Dehydroalanine Formation as Mechanisms for ClpP Protease Inhibition. Journal of the American Chemical Society (JACS), 2014, 136 (4), pp 1360-1366. DOI: 10.1021/ja4082793

Kontakt:

Prof. Dr. Stephan A. Sieber
Lehrstuhl für organische Chemie II
Technische Universität München
Lichtenbergstr. 4, 85747 Garching, Germany
+49 89 289 13302 / 13301 (Sekr.)
E-Mail: stephan.sieber@mytum.de
Weitere Informationen:
http://pubs.acs.org/doi/abs/10.1021/ja4082793

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.tum.de

Weitere Berichte zu: Aminosäure Antibiotikum Bakterien ClpP Hemmstoff Protease Protein Spaltung Wirkmechanismen Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EU-Projekt: Bilder leistungsstark und energieeffizient verarbeiten

24.01.2017 | Förderungen Preise

„Allen Unkenrufen zum Trotz“ Neues Projekt sorgt für Schutz der Gelbbauchunken in Bayern

24.01.2017 | Förderungen Preise

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungsnachrichten