Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Wirkmechanismen eröffnen alternative Wege zur Entwicklung von Antibiotika

13.02.2014
Proteasen sind lebenswichtige Proteine, die für Ordnung in der Zelle sorgen.

Sie spalten andere Eiweiße und bewirken, dass diese korrekt auf- oder abgebaut werden. Auch für die krankheitserregende Wirkung vieler Bakterienarten sind Proteasen verantwortlich.


Das Ziel des Angriffs: die Protease ClpP
Bild: M. Gersch/F. Alte / TUM

Nun haben Chemiker der Technischen Universität München (TUM) zwei bislang unbekannte Wirkmechanismen entdeckt, mit denen eine wesentliche bakterielle Protease dauerhaft ausgeschaltet werden kann.

Proteine bestehen aus einer Kette von Aminosäuren und sind für sämtliche Prozesse in der Zelle wesentlich. Einer der wichtigsten Proteintypen sind die Proteasen. Wie kleine „molekulare Scheren“ schneiden sie andere Eiweiße an bestimmten Stellen und übernehmen auf diese Weise wichtige Funktionen in der Zelle. Durch die Spaltung werden andere Proteine beispielsweise an- oder ausgeschaltet, fehlerhafte Proteine abgebaut oder Signalsequenzen, die dazu dienen Proteine an die richtige Stelle der Zelle zu transportieren, entfernt.

Doch nicht nur für menschliche Zellen sind Proteasen wichtig – auch Bakterien sind auf sie angewiesen. Gegen manche krankheitserregende Arten, wie etwa einige multiresistente Stämme des Erregers Staphylococcus aureus und des Tuberkulose verursachenden Bakteriums Mycobacterium tuberculosis gibt es heute kaum noch wirksame Antibiotika.

Mit hohem Aufwand versuchen Forscher daher weltweit neue Wege zu finden, die in diesen Stämmen vorkommenden Proteasen auszuschalten und so die Erreger zu bekämpfen. Im Zentrum der Bemühungen steht die sogenannte ClpP-Protease. Sie besteht aus vierzehn Untereinheiten und hat eine zentrale regulatorische Funktion. Meist wird versucht sie durch Substanzen auszuschalten, die alle aktiven Zentren der ClpP blockieren. Dies sind quasi „die Klingen der Schere“, jene Stellen des Proteins also, die für die Spaltung verantwortlich sind.

„Bisher eingesetzte Hemmstoffe haben jedoch einen entscheidenden Nachteil“, erklärt Stephan Sieber, Inhaber des Lehrstuhls für organische Chemie II der Technischen Universität München (TUM). „Sie schalten das Protein nicht dauerhaft aus, sondern wirken nur für einige Stunden. Zudem müssen sie alle aktiven Zentren des Proteins angreifen um eine Wirkung zu erzielen.“

Im Rahmen einer Kooperation mit Prof. Michael Groll, Inhaber des Lehrstuhls für Biochemie, ist es Malte Gersch und Roman Kolb, Doktoranden am Lehrstuhl von Professor Sieber, gelungen, gleich zwei vollkommen neue Mechanismen aufzuklären, mit denen diese wichtige bakterielle Protease dauerhaft ausgeschaltet werden kann – und das in einem Fall sogar ohne alle aktiven Zentren des Proteins angreifen zu müssen.

Der erste Mechanismus stört die Anordnung von Aminosäuren, die für den Zusammenhalt der Protease notwendig sind. Das lässt sie in zwei Teile zerfallen. Der zweite setzt direkt am Kern des aktiven Zentrums an. Er wandelt die Aminosäure, die die eigentliche Spaltung durchführt, in eine andere um – die „Schere“ wird stumpf, das Protein funktionsunfähig. Beide Wege hemmen die Protease auf vollkommen neue Weise und liefern daher vielversprechende Ansätze zur Entwicklung neuer Medikamente.

Die Wissenschaftler fanden zudem eine ganze Reihe von Hemmstoffen, die die beiden Mechanismen auslösen. „Es ist ein großer Fortschritt, dass wir nun wissen, auf welchen Wegen Substanzen die Protease ausschalten“, sagt Gersch. „Wir können nun die Substanzen optimieren und das Prinzip vielleicht auch auf andere Proteasen übertragen.“

In weiteren Forschungen möchten Gersch und Sieber ihre Substanzen an lebenden Bakterienstämmen testen, um zu sehen, ob diese in ihrem Wachstum und ihrer Pathogenität tatsächlich gehemmt werden. „Die Bakterien werden nach unseren jetzigen Erkenntnissen zwar nicht komplett ausgeschaltet, doch sie produzieren wesentlich weniger Toxine, die für eine Entzündung förderlich sind“, meint Gersch. „Die Grundidee dahinter ist, dass die Bildung neuer Resistenzen unterdrückt wird und wir damit dem Immunsystem mehr Zeit geben, selbst mit dem Erreger fertig zu werden.“

Die Forschungsarbeiten wurden gefördert von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen der Sonderforschungsbereiche SFB 749 und SFB 1035 sowie über den Exzellenzcluster Center for Integrated Protein Research Munich (CIPSM), aus Mitteln des European Research Council (ERC starting grant), des Fonds der Chemischen Industrie und der Studienstiftung des Deutschen Volkes. Die Kristallstrukturen wurden in Kooperation mit der Synchrotronquelle des Paul Scherrer Instituts in Villigen (Schweiz) ermittelt.

Originalpublikation:

Malte Gersch, Roman Kolb, Ferdinand Alte, Michael Groll, Stephan Sieber. Disruption of Oligomerization and Dehydroalanine Formation as Mechanisms for ClpP Protease Inhibition. Journal of the American Chemical Society (JACS), 2014, 136 (4), pp 1360-1366. DOI: 10.1021/ja4082793

Kontakt:

Prof. Dr. Stephan A. Sieber
Lehrstuhl für organische Chemie II
Technische Universität München
Lichtenbergstr. 4, 85747 Garching, Germany
+49 89 289 13302 / 13301 (Sekr.)
E-Mail: stephan.sieber@mytum.de
Weitere Informationen:
http://pubs.acs.org/doi/abs/10.1021/ja4082793

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.tum.de

Weitere Berichte zu: Aminosäure Antibiotikum Bakterien ClpP Hemmstoff Protease Protein Spaltung Wirkmechanismen Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Maßstäbe für eine bessere Wasserqualität in Europa
27.02.2017 | Helmholtz-Zentrum für Umweltforschung - UFZ

nachricht Neurobiologie - Vorausschauend teilen
27.02.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Proteine Zellmembranen verformen

Zellen schnüren regelmäßig kleine Bläschen von ihrer Außenhaut ab und nehmen sie in ihr Inneres auf. Daran sind die EHD-Proteine beteiligt, die Professor Oliver Daumke vom MDC erforscht. Er und sein Team haben nun aufgeklärt, wie sich diese Proteine auf der Oberfläche von Zellen zusammenlagern und dadurch deren Außenhaut verformen.

Zellen schnüren regelmäßig kleine Bläschen von ihrer Außenhaut ab und nehmen sie in ihr Inneres auf. Daran sind die EHD-Proteine beteiligt, die Professor...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Poseidon goes Politics – Wer oder was regiert die Ozeane?

27.02.2017 | Veranstaltungen

Fachtagung Rapid Prototyping 2017 – Innovationen in Entwicklung und Produktion

27.02.2017 | Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Herz-Untersuchung: Kontrastmittel sparen mit dem Mini-Teilchenbeschleuniger

27.02.2017 | Medizintechnik

Neue Maßstäbe für eine bessere Wasserqualität in Europa

27.02.2017 | Biowissenschaften Chemie

Wenn der Schmerz keine Worte findet - Künstliche Intelligenz zur automatisierten Schmerzerkennung

27.02.2017 | Medizintechnik