Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Quelle für die Bildung von Nervenzellen im Gehirn entdeckt

25.11.2009
Der Arbeitsgruppe von Prof. Dr. Magdalena Götz am Helmholtz Zentrum München und an der Ludwig-Maximilians-Universität (LMU) München ist ein weiterer Schritt zum Verständnis von Regenerationsprozessen im Gehirn gelungen. Die Forscher entdeckten Vorläuferzellen, die nach Verletzungen der Großhirnrinde neue glutamaterge Nervenzellen bilden können.

Speziell bei Alzheimer spielt deren Degeneration eine entscheidende Rolle. Aus einer möglichen Steuerung des Bildungs- bzw. Wanderungsmechanismus lassen sich in Zukunft möglicherweise neue therapeutische Optionen ableiten. Die Ergebnisse sind in der aktuellen Ausgabe der renommierten Fachzeitschrift Nature Neuroscience veröffentlicht.

Noch bis vor wenigen Jahren galt die Neurogenese, also der Prozess der Entstehung von Nervenzellen, im Gehirn von Erwachsenen als unmöglich. Abgestorbene Nervenzellen können nicht ersetzt werden, so lautete die Lehrbuchmeinung. Dann entdeckten Forscher Regionen im Vorderhirn, in denen auch beim Menschen Zeit Lebens neue Nervenzellen gebildet werden. Diese so genannten GABAergen Zellen benutzen gamma-Aminobuttersäure (GABA), einen Botenstoff des Zentralnervensystems.

Jetzt haben Wissenschaftler der Arbeitsgruppe um Magdalena Götz, Leiterin des Instituts für Stammzellforschung am Helmholtz Zentrum München und Inhaberin des Lehrstuhls für Physiologische Genomik an der LMU, diese Gehirnregion im Mausmodell genauer unter die Lupe genommen. Sie fanden heraus, dass im Vorderhirn noch andere Nervenzellen regelmäßig gebildet werden: die sogenannten glutamatergen Nervenzellen, die als Überträgerstoff Glutamat benutzen. Den Nachweis konnten die Stammzellforscher mit Hilfe eines speziellen Transkriptionsfaktors erbringen: Tbr2 kommt ausschließlich in Vorläuferzellen der glutamatergen Nervenzellen vor.

Die im erwachsenen Organismus neu gebildeten Nervenzellen liegen im Riechkolben, dem Bereich des Gehirns, der die Geruchswahrnehmung vermittelt. Nervenzellen, die Glutamat als Überträgerstoff vermitteln, sind auch für die Speicherung bzw. den Abruf von Gedächtnisinhalten zuständig. Bei der Alzheimer-Demenz spielen Veränderungen bei der Signalübertragung dieser speziellen Zellen eine entscheidende Rolle.

Götz: "Die Entdeckung ist deshalb so wichtig, weil die Vorläuferzellen die von uns neu gefundenen glutamatergen Nervenzellen zum Beispiel auch nach Gehirnverletzungen für die benachbarte Großhirnrinde bilden können". Die Forschergruppe konnte dies am Mausmodell zeigen. Dort wanderten die Zellen in das geschädigte angrenzende Großhirngewebe ein und bildeten dort reife Nervenzellen. Vorläuferzellen könnten demnach degenerierte Nervenzellen ersetzen.

"Spannend ist nun die Frage ob dieser Vorgang auch im Menschen, speziell bei Alzheimerpatienten, abläuft - möglicherweise aber den massiven neuronalen Zelltod nicht mehr unter Kontrolle bekommt", sagt Magdalena Götz. Ein therapeutischer Ansatz bestünde dann darin, diesen körpereigenen Ersatzmechanismus versuchsweise zu stimulieren.

Weitere Informationen

Originalveröffentlichung: Monika S Brill, Jovica Ninkovic, Eleanor Winpenny, Rebecca D Hodge, Ilknur Ozen, Roderick Yang, Alexandra Lepier, Sergio Gascón, Ferenc Erdelyi, Gabor Szabo, Carlos Parras, Francois Guillemot, Michael Frotscher, Benedikt Berninger, Robert F Hevner, Olivier Raineteau & Magdalena Götz: Nature Neuroscience, Volume 12 No 11 pp1351-1474 (doi:10.1038/nn.2416)

Das Helmholtz Zentrum München ist das deutsche Forschungszentrum für Gesundheit und Umwelt. Als führendes Zentrum mit der Ausrichtung auf Environmental Health erforscht es chronische und komplexe Krankheiten, die aus dem Zusammenwirken von Umweltfaktoren und individueller genetischer Disposition entstehen. Das Helmholtz Zentrum München beschäftigt rund 1700 Mitarbeiterinnen und Mitarbeiter. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens auf einem 50 Hektar großen Forschungscampus. Das Helmholtz Zentrum München gehört der größten deutschen Wissenschaftsorganisation, der Helmholtz-Gemeinschaft an, in der sich 16 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit insgesamt 26500 Beschäftigten zusammengeschlossen haben.

Das Institut für Stammzellforschung des Helmholtz Zentrums München untersucht die zellulären und molekularen Mechanismen, die das Zellschicksal und die Zellvermehrung in unterschiedlichen Organsystemen, regulieren. Die Wissenschaftler erforschen Stammzellen unterschiedlicher Organe, etwa des Nervensystems oder des Blut- und Immun-Systems, um die molekularen und zellulären Mechanismen aufzuklären, die für gemeinsame Merkmale aller Stammzellen, wie Multipotenz und Selbsterneuerung, verantwortlich sind. Ein weiterer Schwerpunkt ist die Regulation der Entstehung spezifischen Zelltypen aus Stammzellen in Hinblick auf eine Zellersatztherapie.

Kontakt für Medienvertreter: Sven Winkler, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1 85764 Neuherberg

Tel.: 089-3187-3946, Fax 089-3187-3324, Internet: http://www.helmholtz-muenchen.de, E-Mail: presse@helmholtz-muenchen.de

Michael van den Heuvel | idw
Weitere Informationen:
http://www.helmholtz-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen
23.05.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Mikro-Lieferservice für Dünger
23.05.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie