Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Need for Speed: Bewegungsmessungen im Zellkern mit Hochgeschwindigkeit

03.12.2012
Heidelberger Wissenschaftler untersuchen Wechselwirkungen zwischen Proteinen und DNA in lebenden Zellen

Mit einer neuen Messmethode ist es Heidelberger Wissenschaftlern gelungen, Wechselwirkungen zwischen Proteinen und DNA im Zellkern mit einer Zeitauflösung von einer tausendstel Sekunde zu verfolgen.


Mikroskopie-Aufnahmen nach Bleichen der Fluoreszenz in einem kreisförmigen oder rechteckigen Bereich. Die dunklen „Schatten“ stellen gebleichte Proteine dar, die sich während der Bildaufzeichnung bewegt hatten.

Abbildungsnachweis: Fabian Erdel und Karsten Rippe

Gemessen werden konnte damit in lebenden Zellen die Bindung hochspezialisierter Proteinkomplexe, die die räumliche Struktur der Erbinformation gezielt verändern und so das Auslesen der DNA-Information kontrollieren.

Die Arbeiten von Privatdozent Dr. Karsten Rippe und seinem Team wurden am BioQuant-Zentrum der Universität Heidelberg und am Deutschen Krebsforschungszentrum durchgeführt. Ihre Forschungen haben gezeigt, dass die Positionierung von Nukleosomen – dies sind Komplexe aus DNA-Strängen und speziellen Proteinen – ein genau geregelter molekularer Prozess ist. Eine Fehlregulation kann mit verschiedenen Krebsarten in Verbindung gebracht werden. Die Ergebnisse dieser Untersuchungen wurden in der Fachzeitschrift PNAS veröffentlicht.

Im menschlichen Genom sind die DNA-Stränge um bestimmte Verpackungsproteine – die Histone – gewickelt. Zwischen diesen als Nukleosomen bezeichneten Komplexen befinden sich DNA-Bereiche, die frei von Histonen sind und die die Nukleosomen wie auf einer Perlenkette verbinden. „Die Aktivierung eines Gens erfordert frei zugängliche DNA. Wird die entsprechende DNA im Nukleosom verdeckt, ist das Gen oft abgeschaltet“, erläutert Dr. Rippe. „So geben die Positionen der Nukleosomen das Auslesemuster der DNA-Sequenz vor. Die freie DNA zwischen zwei Nukleosomen ist leichter zugänglich als die DNA-Bereiche in einem Nukleosom.“ Molekulare Maschinen, sogenannte Chromatin Remodeler, können unter Energieverbrauch Nukleosomen entlang der DNA-Kette verschieben. Dadurch etablieren sie Auslesemuster, die zusammen mit anderen Faktoren das aktive DNA-Programm der Zelle bestimmen.

Die Wissenschaftler um Karsten Rippe untersuchen mit Hilfe von Fluoreszenzmikroskopie-Verfahren, wie die Chromatin Remodeler das Auslesen der Erbinformation steuern. Dabei konnten sie messen, dass in einer menschlichen Zelle die meisten der rund eine Million Chromatin Remodeler immer wieder nur kurz an ein Nukleosom binden, um zu testen, ob alle rund 30 Millionen Nukleosomen in der richtigen Position sind. Um die Arbeitsweise dieser molekularen Maschinen verstehen zu können, war eine neue Messmethode erforderlich.

„Wir mussten kurze Bindungsereignisse mit einer Auflösung von einer tausendstel Sekunde aufzeichnen und gleichzeitig auch die selten auftretenden Reaktionen mit einer Bindungszeit von mehreren Sekunden oder gar Minuten nachweisen“, erläutert Karsten Rippe. Aus einer Idee des Doktoranden Fabian Erdel entstand dafür die Methode 3PEA für „Pixel-wise Photobleaching Profile Evolution Analysis“, die für Messungen in lebenden Zellen eingesetzt werden kann.

In seinen Experimenten brachte Fabian Erdel die künstliche Fluoreszenzmarkierung der Chromatin Remodeler durch Laserbestrahlung zum Erlöschen. Dabei beobachtete er, dass durch die so „gebleichten“ Proteine ein „Schatten“ entstand, wenn sie sich während der Aufzeichnung des Bildes bewegten. Die Form dieses Schattens hing davon ab, wie stark die Bewegung der Chromatin Remodeler durch Bindung an Nukleosomen verlangsamt wurde. „Es war nicht einfach, das Schattenbild in die Bindungsdauer umzurechnen, aber die Mühe hat sich gelohnt: Unsere Methode hat neue vielversprechende Anwendungsmöglichkeiten, weil wir damit die Bindung von Proteinen in lebenden Zellen sehr schnell und sehr genau messen können“, erklärt Fabian Erdel.

Mithilfe von 3PEA-Messungen haben die Forscher gezeigt, dass sich ein einzelner Chromatin Remodeler innerhalb nur einer Sekunde fast durch den gesamten Zellkern bewegt und dabei über 300 Nukleosomen testet – meistens ohne aktiv zu werden. Nur manchmal bindet die molekulare Maschine für einige Sekunden oder sogar Minuten an ein Nukleosom, um es dann auf der DNA zu verschieben. In einem nächsten Schritt will die Forschungsgruppe von Dr. Rippe die Signale entziffern, die die Chromatin Remodeler an bestimmten Stellen des Genoms aktivieren.

Informationen im Internet sind unter http://malone.bioquant.uni-heidelberg.de zu finden.

Originalveröffentlichung:
F. Erdel, K. Rippe: Quantifying transient binding of ISWI chromatin remodelers in living cells by pixel-wise photobleaching profile evolution analysis, PNAS, 20 November 2012, vol. 109, no. 47, E3221-3230 (online 5 November 2012, doi:10.1073/pnas.1209579109).

Kontakt:
Privatdozent Dr. Karsten Rippe
BioQuant, Telefon (06221) 54-51376
karsten.rippe@bioquant.uni-heidelberg.de

Universität Heidelberg
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://malone.bioquant.uni-heidelberg.de
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Superkondensatoren aus Holzbestandteilen
24.05.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Was einen guten Katalysator ausmacht
24.05.2018 | Carl von Ossietzky-Universität Oldenburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Was einen guten Katalysator ausmacht

24.05.2018 | Biowissenschaften Chemie

Superkondensatoren aus Holzbestandteilen

24.05.2018 | Biowissenschaften Chemie

Neue Schaltschrank-Plattform für die Energiewelt

24.05.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics