Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Naturphänomen: Die Nanostrukturen des Dentins

03.06.2016

Was Zähne fester macht als jedes bekannte künstliche Material

Dentin gilt als einer der beständigsten biologischen Stoffe überhaupt. Wie Wissenschaftler der Charité – Universitätsmedizin Berlin nun zeigen konnten, ist es in seiner Zusammensetzung langlebiger als jedes künstlich geschaffene Material.


Biostruktur des Dentins: Tubuli und Netz von Kollagenfasern, in denen mineralische Nanopartikel eingebettet sind. Grafik: Jean-Baptiste Forien, © Charité – Universitätsmedizin Berlin

Der Grund dafür liegt in seinen winzigen Nanostrukturen und hier insbesondere im Wechselspiel der einzelnen Komponenten. Die präzise Interaktion zwischen Proteinfasern und mineralischen Nanopartikeln ist dafür verantwortlich, dass Dentin ausgesprochen hohem Druck standhalten kann, wie Messungen an der Synchrotronquelle BESSY II des Helmholtz-Zentrums Berlin gezeigt haben. Die Ergebnisse sind jetzt in der Fachzeitschrift Chemistry of Materials* veröffentlicht.

Ganze 5000 Mal und mehr beißt der Mensch an einem Tag zu. Gesunde Zähne brechen dabei erstaunlich selten, und sie halten beim Kauen starkem Druck stand. Das liegt an ihrem Aufbau. Ein Zahn besteht aus dem Zahnbein, auch Dentin genannt, welches von Zahnschmelz umhüllt ist.

Das Geheimnis steckt im Detail. Das Zahnbein ist eine knochenähnliche Substanz, bestehend aus kleinsten mineralischen Nanopartikeln, Kollagen und Wasser. Während der Zahnschmelz vor allem aus dem Mineral cHAP gebildet wird, ist das Dentin ein komplexes Nanokomposit. In organische Kollagen-, also Eiweißfasern, sind anorganische Nanopartikel aus cHAP-Kristallen eingebettet.

Für die hohe Belastbarkeit der Biostruktur sind innere Spannungen verantwortlich, wie die Wissenschaftler um Dr. Jean-Baptiste Forien und Dr. Paul Zaslansky vom Julius Wolff Institut der Charité bereits nachweisen konnten.

Die innere Vorspannung innerhalb des Materials erklärt, warum sich kleinere Risse oder Sprünge im Zahnschmelz meist nicht weiter im intakten Dentin ausbreiten. Nun hat das Team um Zaslansky die Wechselwirkungen zwischen Nanopartikeln und Kollagenfasern in menschlichen Zahnproben genau vermessen:

„Erstmals konnten wir nicht nur die Gitterkonstanten der cHAP-Kristalle in den Nanopartikeln präzise bestimmen, sondern gleichzeitig auch die Größen der Nanopartikel ermitteln. Dabei haben wir unter anderem festgestellt, welchen Belastungen sie prinzipiell standhalten können”, sagt Zaslansky.

Einblick in die winzigen Strukturen haben die Forscher in Laboren der Charité erhalten, wie auch durch Messungen an der Synchrotronquelle BESSY II, einem wissenschaftlichen Großgerät am Helmholtz-Zentrum Berlin, das Strahlung vom Terahertz- bis in den Röntgenbereich erzeugt.

In ihren Experimenten haben die Wissenschaftler den internen Druck in den Dentinproben erhöht. Dazu erhitzten sie die Proben auf 125 Grad Celsius, um sie auszutrocknen. Der Wasserverlust lässt die Kollagenfasern schrumpfen, die daraufhin hohe Drucke auf die Nanopartikel ausüben. Mit bis zu 300 Megapascal entsprechen diese Druckverhältnisse der Streckfestigkeit von Baustahl und sind 15 Mal höher als der eigentliche Kaudruck, der üblicherweise weit unter 20 Megapascal liegt. Während der Wärmebehandlung wurden die Proteinfasern nicht zerstört, was auf eine Schutzwirkung der mineralischen Nanopartikel hindeutet.

Die Auswertung der Daten zeigt zudem, dass das Gitter der cHAP-Mineralkristalle im Zahn von außen nach innen kleiner wird. „Gewebe nahe des Zahnmarks, das sich in späteren Stadien der Zahnentwicklung gebildet hat, enthält Mineralpartikel mit kleineren Einheitszellen“, stellt Zaslansky fest. Die Größe der Nanopartikel verhält sich ebenso: Während sie in der Zahnwurzel außen, in Richtung des sogenannten Zements, noch etwa 36 Nanometer lang sind, weisen sie im Inneren des Zahnbeins, in Richtung der Pulpa, nur noch 25 Nanometer Länge auf.

Mit seinen raffinierten Strukturen könnte das Zahnbein Vorbild bei der Entwicklung neuer Materialien sein, beispielsweise für Zahnfüllungen. „Die Architektur des Dentins ist deutlich komplexer als erwartet. Während der Zahnschmelz sehr hart, aber auch spröde ist, üben die organischen Fasern im Dentin genau den richtigen Druck auf die mineralischen Nanopartikel aus, um das Zahnbein insgesamt noch belastbarer zu machen“, so die Wissenschaftler. Das gilt zumindest, solang der Zahn intakt ist.

Kariesbakterien lösen nicht nur den mineralischen Zahnschmelz, sondern produzieren auch Enzyme, die die Kollagenfasern zerstören. Damit kann der Zahn leichter brechen. Entscheidend sind die Ergebnisse der aktuellen Untersuchung insbesondere auch für die Zahnmedizin in der täglichen Anwendung:

„Zähne sollten während einer Behandlung, beispielsweise dem Einbringen von Füllungen oder dem Befestigen von Kronen, nass sein und nicht zu stark erwärmt werden. Das vermeidet internen Druck und kann zu nachhaltigeren Behandlungserfolgen führen“, resümiert Zaslansky.

*Jean-Baptiste Forien, Ivo Zizak, Claudia Fleck, Ansgar Petersen, Peter Fratzl, Emil Zolotoyabko and Paul Zaslansky. Water-Mediated Collagen and Mineral Nanoparticle Interactions Guide Functional Deformation of Human Tooth Dentin. Chemistry of Materials. 2016, 28 (10), pp 3416–3427. doi: 10.1021/acs.chemmater.6b00811.

Kontakt:
Dr. Paul Zaslansky
Julius Wolff Institut
Charité – Universitätsmedizin Berlin
t: +49 30 450 559 589
E-Mail: paul.zaslansky@charite.de

Weitere Informationen:

http://www.charite.de
http://jwi.charite.de/

Manuela Zingl | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verteidigung um fast jeden Preis
14.12.2017 | Max-Planck-Institut für Evolutionsbiologie, Plön

nachricht Mitochondrien von Krebszellen im Visier
14.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten