Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Natürliches Kanalprotein in künstliche Membran eingebaut

30.07.2013
Künstliche Membranen eignen sich gut, um grundlegender Prinzipien lebender Systeme modellhaft zu untersuchen. Forschern der Universität Basel ist es nun erstmals gelungen, ein natürliches Kanalprotein in eine synthetische Doppelschichtmembran einzubauen und den Ionentransport durch die Membran zu kontrollieren. Dies berichten sie in der Fachzeitschrift «Scientific Reports».

In Zellen trennen Membranen verschiedene Bereiche voneinander ab. Diese Trennschichten sind aber nicht ganz undurchlässig: Spezielle Kanalproteine wirken zum Beispiel wie eine Schleuse, durch die ausgewählte Moleküle oder elektrisch geladene Teilchen die Membran passieren können.

Um diese Transportprozesse an einem einfachen Modell untersuchen zu können, haben Forscher am Departement Chemie der Universität Basel ein natürliches Kanalprotein (α-Hämolysin) in eine künstliche, doppelschichtige Membran eingebaut.

Dazu verankerten sie zunächst die synthetische Membran an einer Oberfläche aus Gold, wodurch eine flache Membranstruktur entstand. Im Vergleich zu freistehenden Membranen oder kugelförmigen Bläschen hat dies den Vorteil, dass die hier verwendete Membran mechanisch stabiler ist und vielfältiger eingesetzt werden kann. In die flache Membranstruktur konnten sie dann das Kanalprotein dicht gedrängt einbauen – bis zu 420 Kanalproteine auf einem Quadratmillimeter der Membran.

Praktische Anwendung als Biosensor
Die Funktionsfähigkeit des eingebauten Kanalproteins überprüften die Forscher um die Professoren Wolfgang Meier und Cornelia Palivan, indem sie eine elektrische Spannung an die künstliche Membran anlegten. Dabei wandern Ionen durch die ein bis zwei Nanometer breiten Kanäle des Proteins und leiten so den Strom über die Membran.

Mit dem neuen Membransystem gelang es, die Ionenwanderung präzise zu steuern und eine exakte Zahl von Ionen durch die Membran wandern zu lassen. So liessen sich zum Beispiel positiv geladene Ionen im ca. drei bis vier Nanometer messenden Zwischenraum zwischen Membran und Goldoberfläche anreichern, wodurch die angelegte elektrische Spannung kompensiert wurde.

Diesen Effekt könnte man für die Entwicklung von Biosensoren nutzen, die zur Untersuchung der Wechselwirkung von Wirkstoffen mit Proteinen eingesetzt werden können. Dadurch eröffnen sich vielfältige praktische Anwendungsmöglichkeiten in der pharmakologischen und biochemischen Forschung.

Originalbeitrag
Xioayan Zhang, Wangyang Fu, Cornelia G. Palivan, Wolfgang Meier
Natural channel protein inserts and functions in a completely artificial, solid-supported bilayer membrane

Scientific Reports 3, Article number: 2196 | doi: 10.1038/srep02196

Weitere Auskünfte
• Prof. Dr. Wolfgang Meier, Universität Basel, Departement Chemie, Tel. +41 61 267 38 02, E-Mail: wolfgang.meier@unibas.ch

• Prof. Dr. Cornelia G. Palivan, Universität Basel, Departement Chemie, Tel. +41 61 267 38 39, E-Mail: Cornelia.Palivan@unibas.ch

Weitere Informationen:
http://dx.doi.org/10.1038/srep02196 - Abstract

Reto Caluori | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kontinentalrand mit Leckage
27.03.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Neuen molekularen Botenstoff bei Lebererkrankungen entdeckt
27.03.2017 | Universitätsmedizin Mannheim

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE