Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Nanofarben die Luft reinigen

18.01.2011
Nanowissenschaftler des Instituts für Chemie und des Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) der Universität Kassel entwickeln derzeit Mixturen aus winzigen Farbstoffmolekülen und Titandioxid-Nanopartikeln. Die daraus entstehenden Spezialfarben könnten als Anstrich auf Schallschutzwänden, Leitplanken und Brücken entlang der Straßen die Luft reinigen.

Trotz moderner Katalysatortechnik stoßen Autos und vor allem Diesel-Lkw auf deutschen Straßen jährlich noch immer rund eine halbe Million Tonnen Stickoxide aus. Diese Umweltgifte bedrohen besonders die Gesundheit von Kindern und älteren Menschen.

Zudem sind sie auch an der Schädigung der Ozonschicht beteiligt. Stickoxide, aber auch Keime in der Luft können möglicherweise in Zukunft ohne großen technischen Aufwand oder Filter unschädlich gemacht werden: Nanowissenschaftler des Instituts für Chemie und des Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) der Universität Kassel entwickeln derzeit Mixturen aus winzigen Farbstoffmolekülen und Titandioxid-Nanopartikeln.

Die daraus entstehenden Spezialfarben könnten als Anstrich auf Schallschutzwänden, Leitplanken und Brücken entlang der Straßen die Luft reinigen.

Professor Dr. Rüdiger Faust und seine Mitarbeiter arbeiten seit etwa einem Jahr daran, dass diese Vision Wirklichkeit wird. Grundlage ist ein chemischer Prozess, die Photokatalyse, den sich die Industrie bereits in einer Reihe von marktgängigen Produkten zunutze gemacht hat: Selbstreinigende Fenster, Dachpfannen und Autorückspiegel beispielsweise werden mit Nanopartikeln aus Titandioxid beschichtet. Die Teilchen sind dabei mehr als tausendmal kleiner als das menschliche Haar. Trifft Licht auf die Beschichtung, so entsteht reaktiver Sauerstoff, der Schmutz auf der Oberfläche durch Oxidation zersetzt.

BMBF fördert Projekt mit über zwei Millionen Euro:
Ob die Photokatalyse auch effizient zur Luftreinigung eingesetzt werden kann, wollen die Kasseler Wissenschaftler gemeinsam mit Forschern der Universitäten Hannover und Dresden sowie Partnern aus der Industrie klären. Das Bundesministerium für Bildung und Forschung (BMBF) fördert das auf drei Jahre angelegte Projekt „HelioClean“ mit 2,3 Millionen Euro.

Eine erste Etappe haben Faust und sein Team bereits bewältigen können. Zusammen mit Dr. Dietmar Stephan aus dem Fachgebiet Werkstoffe des Bauwesens und Bauchemie der Uni Kassel haben die Wissenschaftler im Labor erfolgreich ein Hybridmaterial aus miteinander verzahnten Farbstoffmolekülen und Titandioxidteilchen in Nanogröße entwickelt. Damit wollen sie eine wichtige Hürde auf dem Weg zu einer effizienten Luftreinigung mit Nanopartikeln nehmen. Denn die Zersetzung von Schmutz oder Schadstoffen durch Titandioxid funktioniert eigentlich nur, wenn energiereiches, ultraviolettes Licht auf die Partikel trifft und den Oxidationsprozess in Gang bringt. Im Schatten, im trüben Licht des Winters oder in geschlossenen Räumen ist jedoch zu wenig ultraviolettes Licht vorhanden.

Grün und Blau als Schlüssel:
Die von den Kasseler Chemikern modifizierten Farbstoffe sollen nun bewirken, dass der Oxidationsprozess auch dann in Gang kommt, wenn weniger energiereiches, langwelliges Licht auf die Titandioxidpartikel trifft. Die Forscher experimentieren dabei mit Phthalocyaninen, Farbstoffe in den Tönen Grün und Blau, wie sie auch aus Tinten und Autolacken bekannt sind. „Farbstoffe dieses Typs sind in der Lage, die vom Licht aufgenommene Energie für den reinigenden Oxidationsprozess einzusetzen“, sagt Faust. Die Herausforderung bestand darin, maßgeschneiderte Farbstoffmoleküle herzustellen, erklärt der Nanostrukturwissenschaftler Andreas Winzenburg. Denn die meisten Farbstoffe seien in Kombination mit Titandioxidpartikeln nicht in der Lage, die aufgenommene Lichtenergie für den Reinigungsprozess an den Luftsauerstoff abzugeben. Die Kasseler Forscher arbeiten daran, den Wirkungsgrad des Energieumsatzes ihrer Farbstoffe weiter zu optimieren. Ziel ist eine Rezeptur, mit der die reinigenden Farben in industriellem Maßstab gefertigt werden können.

Mitte dieses Jahres wird die Reinigungskraft von Titandioxid im Rahmen des HelioClean-Projekts einem Praxistest unterzogen. In Zusammenarbeit mit der Bundesanstalt für Straßenwesen erhalten Schallschutzwände entlang eines 200 Meter langen Autobahnabschnitts eine Beschichtung aus modifizierten Photokatalysatoren. Dort sollen die Forschungsmaterialien die in den Abgasen reichlich vorhandenen und gesundheitsschädlichen Stickoxide vernichten. Die Titandioxid-Partikel haben die Fähigkeit, durch Photokatalyse Stickoxid in Nitrat umzuwandeln. Dieser Stoff – so die Erwartung der Forscher - würde anschließend mit dem Regenwasser einfach abgewaschen. Der Versuch soll zeigen, ob ein großflächiger Einsatz der neuen Farbe zur Luftreinhaltung sinnvoll sein kann.

Faust sieht neben der Luftreinhaltung entlang von Verkehrsstraßen weitere Einsatzmöglichkeiten für das Hybridmaterial. So könnte ein Anstrich mit der Spezialfarbe in Operationsräumen dafür sorgen, dass die Belastung durch gefährliche Keime vermindert wird. Und in Wohnungen könnte die Farbe die Raumluft von Formaldehyd befreien, das aus manchen Möbeln ausdünstet und die Gesundheit gefährdet.

Info
Prof. Dr. Rüdiger Faust
Universität Kassel
Institut für Chemie
Tel.: 0561/804-4750
R.Faust@uni-kassel.de
Dr. Guido Rijkhoek
Universität Kassel
Kommunikation, Presse- und Öffentlichkeitsarbeit
Tel.: 0561/804-2217
rijkhoek@uni-kassel.de

Christine Mandel | idw
Weitere Informationen:
http://www.uni-kassel.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen