Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mutationen an- und wieder ausschalten

12.04.2016

Kieler Forschungsteam erleichtert mit neuem Verfahren funktionale Genomik

Schimmelpilze werden vor allem mit diversen gesundheitlichen Risiken in Verbindung gebracht. Sie spielen auch eine weniger bekannte, für die Biotechnologie aber besonders wichtige Rolle. Der Schimmelpilz Aspergillus niger zum Beispiel dient seit rund 100 Jahren der industriellen Gewinnung von Zitronensäure, die in vielen Nahrungsmitteln als konservierender Zusatzstoff enthalten ist.


Je mehr Doxycyclin man zugibt, desto aktiver wird das mobile genetische Element und damit steigt die Zahl der mutierten Kolonien.

Foto: Prof. Frank Kempken

Um die genetischen Mechanismen zu erkunden, die Aufschluss über das mögliche Anwendungsspektrum von Schimmelpilzen und ihrer Stoffwechselprodukte geben können, hat ein Forschungsteam der Christian-Albrechts-Universität zu Kiel (CAU) gemeinsam mit Kolleginnen und Kollegen von der niederländischen Universität Leiden nun ein neues Verfahren entwickelt.

Es erlaubt die schnelle Erzeugung einer großen Anzahl genetisch unterschiedlicher Varianten des Schimmelpilzes Aspergillus niger und die anschließende Fixierung der gewonnen genetischen Eigenschaften. Die Forschenden um Professor Frank Kempken, Leiter der Abteilung für Botanische Genetik und Molekularbiologie an der CAU und Mitglied des Forschungsschwerpunkts „Kiel Life Science“, veröffentlichten ihre neuen Erkenntnisse nun im Fachmagazin Applied Microbiology and Biotechnology.

Die biotechnologische Forschung bedient sich genetisch veränderter Modellorganismen, auch Mutanten genannt, um die Funktionen bestimmter Gene bestimmen zu können. Wissenschaftlerinnen und Wissenschaftler bezeichnen dies als funktionale Genomik. Dazu kommt unter anderem ein Verfahren zum Einsatz, das als zufällige Mutagenese bezeichnet wird.

Es setzt genetische Informationen neu zusammen und erzeugt damit unterschiedliche Klone eines Organismus. Die Analyse ihrer voneinander abweichenden Eigenschaften lässt dann Rückschlüsse auf die Wirkung spezifischer Gene zu.

In diesem Zusammenhang widmete sich das Kieler Forschungsteam einem bestimmten in der Forschung häufig verwendeten Stamm des Schimmelpilzes Aspergillus niger. Er ist dadurch gekennzeichnet, dass ein an der Entstehung von Mutationen beteiligtes mobiles genetisches Element mit der Bezeichnung Tan/Vader bei ihm dauerhaft funktionsunfähig ist und deshalb keine Mutationen erzeugen kann.

Experimentell gelang es den Forschenden nun, eine ein- und ausschaltbare Variante dieses mobilen Elementes in Aspergillus niger einzubringen. Durch die Zugabe eines antibiotischen Stoffes namens Doxycyclin lässt sich Tan/Vader einschalten und erzeugt dann Mutanten. Ließen die Forschenden die Substanz wieder weg, folgte die erneute Inaktivierung des mobilen Elementes.

Das An- und Abschalten des mobilen Elementes Tan/Vader ermöglicht es damit, entweder schnell und zufällig mutierende oder aber genetisch stabile Stämme des Pilzes zu erzeugen. Das Verhalten der Pilzstämme bezüglich ihrer Neigung zur Mutation lässt sich damit exakt steuern. „Das neue Verfahren erlaubt es uns, in kurzer Zeit ein großes Arsenal an modifizierten Schimmelpilzen zu erzeugen um ihre Eigenschaften anschließend zu untersuchen. Diese Erkenntnis ist von großer Bedeutung für die Erforschung des genetischen Repertoires von Aspergillus niger im Hinblick auf sein biotechnologisches Potenzial“, ordnet Kempken die Tragweite der vorliegenden Arbeit ein.

Fadenpilze wie Aspergillus niger werden vor allem wegen ihrer Fähigkeit komplexe Enzyme zu bilden in der Biotechnologie ausgiebig erforscht. Solche Enzyme bilden die Grundlage verschiedenster Anwendungen, zum Beispiel in der Lebensmittelproduktion oder der Entwicklung neuer Medikamente. Die aktuellen Erkenntnisse der Kieler Forschenden geben der Wissenschaft ein neues Werkzeug in die Hand, das diese Erkundung künftig erleichtern wird.

Bildmaterial steht zum Download bereit:
http://www.uni-kiel.de/download/pm/2016/2016-097-1.jpg
Je mehr Doxycyclin man zugibt, desto aktiver wird das mobile genetische Element und damit steigt die Zahl der mutierten Kolonien.
Foto: Prof. Frank Kempken

Originalarbeit:
Paun, L., Nitsche, B., Homan, T., Ram, A.F. and F. Kempken (2016): An inducible tool for random mutagenesis in Aspergillus niger based on the transposon Vader.
Applied Microbiology and Biotechnology
Link: http://dx.doi.org/10.1007%2Fs00253-016-7438-3

Kontakt:
Prof. Frank Kempken
Abteilung Genetische Botanik und Molekularbiologie
Botanisches Institut und Botanischer Garten, CAU Kiel
Tel.: 0431-880-4274
E-Mail: fkempken@bot.uni-kiel.de

Weitere Informationen:
Abteilung Genetische Botanik und Molekularbiologie
Botanisches Institut und Botanischer Garten, CAU Kiel
http://www.uni-kiel.de/Botanik/Kempken/fbkem.shtml

Forschungsschwerpunkt „Kiel Life Science“, CAU Kiel
http://www.kls.uni-kiel.de

Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Text: Christian Urban
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de
Twitter: www.twitter.com/kieluni, Facebook: www.facebook.com/kieluni

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher beschreiben neuartigen Antikörper als möglichen Wirkstoff gegen Alzheimer
22.08.2017 | Martin-Luther-Universität Halle-Wittenberg

nachricht Virus mit Eierschale
22.08.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

22.08.2017 | Physik Astronomie

Forscher beschreiben neuartigen Antikörper als möglichen Wirkstoff gegen Alzheimer

22.08.2017 | Biowissenschaften Chemie

Virus mit Eierschale

22.08.2017 | Biowissenschaften Chemie